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Latest News:
e June 5, 2022: Stable release 1.8 is out.
* Major features of 1.8 release: ensemble optimizers are added (AEO, EDEV, EPSO, HCLPSO).
¢ November 24, 2021: Stable release 1.7 is out.
* September 10, 2021: First NEORL stable release 1.6 is out.

Primary contact to report bugs/issues: Majdi I. Radaideh (radaideh @mit.edu)
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NEORL (NeuroEvolution Optimisation with Reinforcement Learning) is a set of implementations of hybrid algo-
rithms combining neural networks and evolutionary computation based on a wide range of machine learning and
evolutionary intelligence architectures. NEORL aims to solve large-scale optimization problems relevant to operation
& optimisation research, engineering, business, and other disciplines.

Github repository: https://github.com/mradaideh/neorl
NEORL paper: https://arxiv.org/abs/2112.07057

CONTENTS 1


mailto:radaideh@mit.edu
https://github.com/mradaideh/neorl
https://arxiv.org/abs/2112.07057

NEORL Documentation, Release 1.8.1b

2 CONTENTS



CHAPTER
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COPYRIGHT

= Exelon |||II-

This repository and its content are copyright of Exelon Corporation © in collaboration with MIT Nuclear Science and
Engineering 2021. All rights reserved.

You can read the first successful application of NEORL for nuclear fuel optimisation in this News Article.



https://www.exeloncorp.com/
https://web.mit.edu/nse/
https://web.mit.edu/nse/
https://news.mit.edu/2020/want-cheaper-nuclear-energy-turn-design-process-game-1217
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CHAPTER
TWO

USER GUIDE

2.1 General Guide

This section provides an overview of the NEORL framework and the installation steps.

2.1.1 Quick Installation

Use this guide if you are an expert Python user and aware of Python virtual environment and package management.
For a safe and clean installation guide, see the Detailed Installation section.

Prerequisites

NEORL is tested on python3 (3.6-3.7) with the development headers. Please, avoid using python 3.5 or
lower (as dictionary ordering is not preserved), or python 3.8 or newer (as tensorflow-1.14.0 will not be stable).

Note: NEORL supports tensorflow versions from 1.8.0 to 1.14.0, we do not support tensorflow >= 2.0.
Please, make sure to uninstall tensorflow if already installed on your environment or have a proper version. If
tensorflow is left in the virtual environment, NEORL will automatically force tensorflow—1.14.0 for most
stability.

Ubuntu Prerequisites

sudo apt-get update && sudo apt-get install cmake python3-dev

Windows 10 Prerequisites

To install NEORL on Windows, it is recommended to install Anaconda3 on the machine first to have some pre-installed
packages, then open “Anaconda Prompt” as an administrator and use the instructions below for Install using pip.

Note: You can access Anaconda3 archives for all OS installers from this page https://repo.anaconda.com/archive/

Note: We typically recommend creating a new virtual environment for NEORL to avoid version conflicts and com-
patibility issues with other projects.



https://repo.anaconda.com/archive/
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conda create ——name neorl python=3.7
conda activate neorl

Install using pip

For both Ubuntu and Windows, you can install NEORL via pip

pip install neorl

2.1.2 Detailed Installation
Use this guide if you are looking for a safe and clean installation of NEORL with all Python tools and package

management. If you are an expert Python user and aware of Python virtual environment and package management,
see the Quick Installation section.

Linux/Ubuntu

Step 0: Prerequisites (Anaconda3 Installation)

Anaconda3 will provide you with OS-independent framework that hosts Python packages, including NEORL. If you
have Anaconda3 installed on your machine, move to Step 1.

1- First download the Anaconda3 package

wget —-no-check-certificate https://repo.continuum.io/archive/Anaconda3-2019.03-Linux-
—x86_64.sh

2- Start the installer

bash Anaconda3-2019.03-Linux-x86_64.sh

3- Follow the instructions on the screen and wait until completion (See the notes below on how to respond to certain
prompts)

Note: Choose the default location for installation when asked (e.g. /home/username/anaconda3)

Note: Enter yes when you get this prompt: Do you wish the installer to initialize Anaconda3 by running conda
init? [yesino]

4- You may update the setup tool packages before proceeding

pip install —--upgrade pip setuptools wheel

6 Chapter 2. User Guide
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Step 1: Create virtual environment for NEORL

NEORL is tested on python3 (3.6-3.7) with the development headers. Please, avoid using python 3.5 or
lower (as dictionary ordering is not preserved), or python 3.8 or newer (as tensorflow-1.14.0 will not be stable).

1- Create a new python-3.7 environment with name neorl

conda create —-name neorl python=3.7

Warning: For some machines that are not updated frequently (e.g. clusters), TensforFlow may fail to load due
to outdated gcc libraries. If you encounter those errors, we typically recommend to downgrade python by using
python=3.6, when creating the virtual environment.

2- Activate the environment

conda activate neorl

Warning: You need to run conda activate neorl every time you log in the system, therefore, it is good
to add this command to your OS bashrc or environment variables for automatic activation when you log in.

Step 2: Install NEORL

Make sure neorl environment is activated, then run the following command:

’pip install neorl

Warning: Depending on your OS, conda command may fail due to unknown reasons. If conda list com-
mand fails, then type

’conda update -n base -c defaults conda ‘

Step 3: Test NEORL

After an error-free Step 2 completion, you can test NEORL by typing on the terminal:

neorl

which yields NEORL logo

2.1. General Guide 7
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NEORL: NeuroEvolution Optimisation with Reinforcement Learning

NEDORL

Copyright © 2021 Exelon Corporation (https://www.exeloncorp.com in collaboration with

MIT Nuclear Science and Engineering (https://web.mit.edu/nse/)
All Rights Reserved

usage: neorl [-h] [-1 INPUT] [-c CHECK] [-t] [-e] [-v]

NEORL command line API parser

optional arguments:

-h, --help show this help message and exit

-1 INPUT, --input INPUT
Name of the input ASCII file, e.g. INPUT.inp,
INPUT.dat (required arg)

-¢ CHECK, --check CHECK
check input file syntax and exit

-t, --test run NEORL units tests

-e, --example print a simple NEORL script and exit

-v, --version show program's version number and exit

and you can run unit tests by running:

neorl —-test

Windows 10

Step 0: Prerequisites (Anaconda3 Installation)

Anaconda3 will provide you with OS-independent framework that hosts Python packages, including NEORL. If you
have Anaconda3 installed on your machine, move to Step 1.

1- First download the Anaconda3 package by visiting the link in the note below and search for Anaconda3-2019.
03-Windows—-x86_64.exe

Note: You can access Anaconda3 archives for all OS installers from this page https://repo.anaconda.com/archive/

or simply click on the link below to download:
https://repo.anaconda.com/archive/Anaconda3-2019.03-Windows-x86_64.exe

2- Start the exe installer, follow the instructions on the screen, and wait until completion. See the notes below on what
options to choose.

Note:
* Choose the option “Register Anaconda as your default Python-3.7".

¢ For the option of “adding anaconda to your PATH variables”, choose this option only if you have cleaned all
previous Anaconda3 releases from your machine.

8 Chapter 2. User Guide
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Step 1: Create virtual environment for NEORL

Search for Anaconda Prompt and open a new terminal as an administrator

1- Create a new python-3.7 environment with name neorl

’conda create —-name neorl python=3.7

2- Activate the environment

’conda activate neorl

Step 2: Install NEORL

Make sure neorl environment is activated, then run the following command:

’pip install neorl

Warning: Depending on your OS, conda command may fail due to unknown reasons. If conda 1list com-
mand fails, then type

’conda update —-n base -c defaults conda ‘

Step 3: Test NEORL

After an error-free Step 2 completion, you can test NEORL by typing on the terminal:

neorl

which yields NEORL logo

2.1. General Guide 9
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NEORL: NeuroEvolution Optimisation with Reinforcement Learning

NEDORL

Copyright © 2021 Exelon Corporation (https://www.exeloncorp.com in collaboration with

MIT Nuclear Science and Engineering (https://web.mit.edu/nse/)
All Rights Reserved

usage: neorl [-h] [-1 INPUT] [-c CHECK] [-t] [-e] [-v]

NEORL command line API parser

optional arguments:

-h, --help show this help message and exit

-1 INPUT, --input INPUT
Name of the input ASCII file, e.g. INPUT.inp,
INPUT.dat (required arg)

-¢ CHECK, --check CHECK
check input file syntax and exit

-t, --test run NEORL units tests

-e, --example print a simple NEORL script and exit

-v, --version show program's version number and exit

and you can run unit tests by running:

neorl —-test

Warning: You need to run conda activate neorl every time you log in the system, therefore, it is good
to add this command to your OS environment variables for automatic activation. Similarly, make sure to connect
your Jupyter notebook and Spyder IDE to neor1 virtual environment NOT to the default base.

2.1.3 Getting Started

NEORL tries to follow a typical machine-learning-like syntax used in most libraries like sklearn and keras.

Here, we describe how to use NEORL to minimize the popular sphere function, which takes the form

The sphere function is continuous, convex and unimodal. This plot shows its two-dimensional (d = 2) form.

10 Chapter 2. User Guide
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Sphere Function
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The function is usually evaluated on the hypercube z; € [—5.12,5.12], forall ¢ = 1,...,d. The global minimum for

the sphere function is:
F(@) =0, at# = (0,0, ..., 0]

Here is a quick example of how to use NEORL to minimize a 5-D (d = 5) sphere function:

import numpy as np
import matplotlib.pyplot as plt
from neorl import DE, XNES

#Define the fitness function
def FIT (individual) :

"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
d=1,2,3, ...

Range: [-100,100]
Minima: 0

mmn

return sum(x++2 for x in individual)

(continues on next page)

2.1. General Guide
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(continued from previous page)

# Parameter Space

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
#Setup the parameter space (d=5)
nx=>5
BOUNDS={}
for i in range(l,nx+1):
BOUNDS['x'+str (i) ]=['float', -100, 100]
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
# DE
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
de=DE (mode="'min', bounds=BOUNDS, fit=FIT, npop=50, CR=0.5, F=0.7, ncores=1l, seed=1)
X_best, y_best, de_hist=de.evolute(ngen=120, verbose=0)
print ('-—--DE Results-——-', )

print ('x:"', x_best)
print('y:', y_best)

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
# NES

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
x0=[-50]+1en (BOUNDS)

amat = np.eye (nx)

xnes=XNES (mode="min', bounds=BOUNDS, fit=FIT, npop=50, eta_mu=0.9,
eta_sigma=0.5, adapt_sampling=True, seed=1)

X_best, y_best, nes_hist=xnes.evolute (120, x0=x0, verbose=0)

print ('-——XNES Results-——-', )

print ('x:', x_best)

print('y:', y_best)

#Plot fitness for both methods

plt.figure()

plt.plot (de_hist['global fitness'], label='DE'")
plt.plot (np.array(nes_hist['fitness']), label='NES'")
plt.xlabel ('Generation')

plt.ylabel ('Fitness')

plt.legend()

plt.show ()

2.1.4 Reinforcement Learning

Reinforcement learning (RL) is a paradigm of machine learning concerned with developing intelligent systems, that
know how to take actions in an environment in order to maximize cumulative reward. RL does not need labelled
input/output data as other machine learning algorithms. Instead, RL collects the data on-the-fly as needed to maximize
the reward. This advantage makes RL a natural choice for optimization problems, for which the search space is usually
too complex and too high to generate a representative dataset.

12 Chapter 2. User Guide
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RL algorithms, like evolutionary algorithms, focus on finding a balance between exploration (new knowledge) and
exploitation (of current knowledge) to maximize the fitness/reward function. We can take this analogy to make RL
intuitive in solving optimization problems through:

1- The agent: which is the optimizer. The agent is controlled by the RL algorithm that trains the agent
to take proper actions. The algorithm takes the current state (s;) and the current reward (r;) as inputs,
and decides the next action to take (a;) as output. The action a, in this case is a sample drawn from the
parameter space for optimization (Z = [x1, Za, ..., Z4)).

2- The current state (s;) for optimization can be set equal to the current action (s; < a.), since we perturb
the whole action space at once, and we are not marching through time.

3- The reward is similar as the fitness function in optimization. If it is a minimization problem, the user
can convert to reward maximization by multiplying the final fitness value with -1.

4- The environment: takes the action provided by the agent (a;), evaluates that action using the fitness
function, assigns the next state and the next reward for taking that action (sy4+1,7:41), and sends them
back to the RL agent. In NEORL, the user only needs to specify the fitness function and the parameter
space, and NEORL can automatically create the environment class and connect that with the RL agent.

5- Steps 1-4 are repeated for sufficient time steps until the agent learns how to take the right action based
on the given state such that the reward is maximized.

6-The best action taken by the agent represents the optimized input (Z), while the best reward is similar
to the best fitness, y = f(Z).

Currently we have a support of some RL algorithms and hybrid neuroevolution, some are listed below

Deep Q Learning

See the DON section

Proximal Policy Optimization

See the PPO section

Advantage Actor Critic

See the A2C section

2.1. General Guide 13
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Recurrent Neuroevolution of Augmenting Topologies

See the RNEAT section

Feedforward Neuroevolution of Augmenting Topologies

See the FNEAT section

2.1.5 Evolutionary Algorithms

Evolutionary and Swarm algorithms are a class of computational intelligence that rely on heuristic-based approaches
to solve optimization problems, which cannot be easily solved in polynomial time. These problems include NP-Hard
combinatorial problems, and similar problems that require too long to process due to the fitness function complexity
(e.g. engineering problems, computer simulation).

The concept of evolutionary algorithms (EA) is quite simple as it follows the process of natural selection and evo-
lution. Genetic algorithms, evolution strategies, and differential evolution are among the most popular EA. An EA
contains four overall stages: initialization, selection, genetic operators, and termination. Typically in an EA, fitter
individuals that maximize/minimize the fitness function will survive and proliferate into the next generations, while
weak individuals will die off and not contribute to the pool of further generations, just like natural selection processes.
A typical workflow of an EA is shown in the figure below.

Initialize first population Crossover & Recombination Form new

1 1 1 1 offspring/population
C P1 P2 D3 - Dn D .

2 21 2 2 : % i

Pi P> P3 . i §1173

< parameter 3

< parameter n

i

i

<
2
Mutation
£ e 2
R - B < vecorn P P2 p3 P
Repeat forn
generations
Perturb this hyperparameter
Best indivi

2 2 . ] Rank the population Evaluate the
= - - and keep the best - population with the

individuals objective function

Swarm intelligence is also another variant of EA and nature-inspired metaheuristics, in which a population of agents
are interacting locally with one another and globally with their environment. The inspiration comes from the nature,
especially how biological systems interact. The agents follow simple rules and with repeated local and some random
interactions between the agents, an emergence of “intelligent” global behavior can be observed among the whole
population of agents. For example, this behavior can be seen in ant colonies, bee colonies, and bird flocking movement
when searching for food. Among the most common swarm algorithms are particle swarm optimization, ant colony
optimization, artificial bee colony, cuckoo search, and many others.

Currently we have a support of many evolutionary and swarm algorithms, some are listed below:

14 Chapter 2. User Guide
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Evolution Strategies

See the ES section

Particle Swarm Optimization

See the PSO section

Differential Evolution

See the DE section

Grey Wolf Optimizer

See the GWO section

Whale Optimization Algorithm

See the WOA section

Cuckoo Search

See the CS section

2.1.6 Hyperparameter Tuning

Hyperparameter tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm, which
includes reinforcement learning, evolutionary, and neuroevolution algorithms of NEORL. Hyperparameter tuning is
effective to maximize the efficiency of the optimization algorithm in hand. In NEORL, we provide different methods
to tune hyperparameters, which are highlighted briefly here.

Grid Search

See the Grid Search section

Original paper: Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2).

Grid Search is an exhaustive search for selecting an optimal set of algorithm hyperparameters. In Grid Search, the
analyst sets up a grid of hyperparameter values. A multi-dimensional full grid of all hyperparameters is constructed,
which contains all possible combinations of hyperparameters. Afterwards, every combination of hyperparameter
values is tested in serial/parallel, where the optimization score (e.g. fitness) is estimated. Grid search can be very
expensive for fine grids as well as large number of hyperparameters to tune.

2.1. General Guide 15
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Grid Layout

Unimportant parameter

Important parameter

For example, to tune few hyperparameters of DQN, the following grids can be defined:

learning_rate =[0.0001, 0.00025, 0.0005, 0.00075, 0.001]

batch_size =[16, 32, 64]

target_network_update_freq=[100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000]
exploration_fraction =[0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35]

The full grid has a size of = 5%3*9*7= 945 (A total of 945 hyperparameter combinations will be evaluated). Therefore,
the cost of grid search is:

Cost = kl X kg X ... X k‘d,

where k; is the number of nodes in the hyperparameter ¢ and d is the number of hyperparameters to tune.

Random Search

See the Random Search section

Original paper: Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2).

Random search is a technique where random combinations of the hyperparameters are used to find the best solution for
the algorithm used. Random search tries random combinations of the hyperparameter set, where the cost function is
evaluated at these random sets in the parameter space. As indicated by the reference above, the chances of finding the
optimal hyperparameters are comparatively higher in random search than grid search. This is because of the random
search pattern, as the algorithm might end up being used on the optimized hyperparameters without any aliasing or
wasting of resources.

Random Layout

Unimportant parameter

Important parameter

For example, to tune few hyperparameters of DQN, the parameters can be defined depending on the type:

learning_rate =4(0.0001,0.001) (Parameter type is continuous f1oat uniform distribution)
batch_size =U{16,64} (Parameter type is discrete int uniform distribution)
target_network_update_freq=C{100,500,1000, 1500} (Parameter type is categorical grid)
exploration_fraction =C{0.05,0.1,0.15} (Parameter type is categorical grid)

16 Chapter 2. User Guide
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The cost of random search is determined by the total number of random evaluations provided by the user (ncases).

Bayesian Search

See the Bayesian Search section
Original paper: https://arxiv.org/abs/1012.2599

Bayesian search, in contrast to grid and random searches, keeps track of past evaluation results. Bayesian uses past
evaluations to form a probabilistic model mapping hyperparameters to a probability of a score on the objective function
(e.g. max/min fitness). Bayesian optimization excels when the objective functions are expensive to evaluate, when we
do not have access to derivatives, or when the problem at hand is non-convex.

The heart of Bayesian optimization is Bayes theorem, which updates our prior beliefs (e.g. hyperparameter values)
after new evidence/data is observed (e.g. new fitness values found by the algorithm of interest). The updated beliefs
are represented by the posterior distribution, which is used to guide the next round of hyperparameter sampling.
Also, Bayesian optimization combines the concepts of “surrogate” models (e.g. Gaussian processes) to accelerate the
search, and the “acquisition” function to guide sampling from the posterior distribution, which both can effectively
make a robust search toward the global optima of the cost function (see the Figure below). The sequential-nature of
Bayesian optimization makes its parallelization complex and not natural as grid/random/evolutionary search, which is
the obvious downside of Bayesian optimization.

(2) Build a GP surrogate model and estimate GP

(1) Random initialization of hyperparameter space § ¥
mean and confidence interval.

1.00 Observed values GP estimate of the function

® points observed
~= true function

best observed value

@ observed values
~~ true function
—— GP mean
confidence interval

0.0 02 04 06 08 10

04 06
hyperparameter hyperparameter

R' peat

(3) Use the maximal lod@ion of the acquisition
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(4) Obtain a new observation from the true
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0.25 0.01

| 0.00
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Edited from source: https://mlconf.com/blog/lets-talk-bayesian-optimization/

For example, to tune few hyperparameters of DQN by Bayesian search, the parameter space can be defined as:

learning_rate =4(0.0001,0.001) (Parameter type is continuous f£1loat uniform distribution)
batch_size =U{16,64} (Parameter type is discrete int uniform distribution)
target_network_update_freq=C{100,500,1000, 1500} (Parameter type is categorical grid)
exploration_fraction=C{0.05,0.1,0.15} (Parameter type is categorical grid)

The cost of Bayesian search is determined by the total number of fitness evaluations provided by the user (ncases).

2.1. General Guide 17
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Evolutionary Search

See the Evolutionary Search section

Original paper: E. Bochinski, T. Senst and T. Sikora, “Hyper-parameter optimization for convolutional neural network
committees based on evolutionary algorithms,” 2017 IEEE International Conference on Image Processing (ICIP),
Beijing, China, 2017, pp. 3924-3928, doi: 10.1109/ICIP.2017.8297018.

We have used a compact evolution strategy (ES) module for the purpose of tuning the hyperparameters of NEORL
algorithms. See the ES algorithm section for more details about the (14, A) algorithm. To reduce the burden on the users,
we specified and adapt all ES tuner hyperparameters, so the user needs to specify the hyperparameter space similar
to grid, random, and Bayesian search methods. ES tuner leverages a population of individuals, where each individual
represents a sample from the hyperparameter space. ES uses recombination, crossover, and mutation operations to
improve the individuals from generation to the other. The best of the best individuals in all generations are reported as
the top hyperparameter sets for the algorithm (See the Figure below).

Initialize first population Crossover & Recombination Form new

- e m < 1 1 1 1 offspring/population

ERIR p1 P2 1)3-1)71 e e

a3 3 T2 2 -
i 0P2] Ps -Pn H
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z
2 2 e 2
vector N P P2 P3 - Pn
Repeat forn
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Perturb this hyperparameter

Evaluate the

2 Rank the population

% - and keep the best - population with the
N

P

individuals objective function

Setting up the hyperparameter space for evolutionary search is quite similar to Bayesian search. Lastly, the cost of
evolutionary search is determined by the total number of evaluated individuals in the population over all generations
(ngen * npop), where npop=10 and ngen is left for the user to decide.

2.2 Algorithms

This section highlights the supported NEORL algorithms and how to setup and solve a problem. The algorithms are
classified in three separate categories.

2.2.1 Neural Algorithms (Reinforcement Learning)

Advantage Actor Critic (A2C)

A synchronous, deterministic variant of Asynchronous Advantage Actor Critic (A3C). It uses multiple workers to
avoid the use of a replay buffer.

Original paper: https://arxiv.org/abs/1602.01783

18 Chapter 2. User Guide
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What can you use?

* Multi processing: v
* Discrete spaces: v’
 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.rl.baselines.a2c.A2C (policy, env, gamma=0.99, n_steps=5, Vvf_coef=0.25,
ent_coef=0.01, max_grad_norm=0.5, learning_rate=0.0007,
alpha=0.99, Ir_schedule="constant’, verbose=0, seed=None,

_init_setup_model=True)
The A2C (Advantage Actor Critic) model class

Parameters

* policy — (ActorCriticPolicy or str) The policy model to use (MIpPolicy, CnnPolicy, CnnL-
stmPolicy, ...)

* env — (NEORL environment or Gym environment) The environment to learn with PPO,
either use NEORL method CreateEnvironment (see below) or construct your custom
Gym environment

* gamma — (float) Discount factor

* n_steps — (int) The number of steps to run for each environment per update (i.e. batch
size is n_steps * n_env where n_env is number of environment copies running in parallel)

e vE£_coef — (float) Value function coefficient for the loss calculation

* ent_coef — (float) Entropy coefficient for the loss calculation

* max_grad _norm - (float) The maximum value for the gradient clipping
* learning_rate — (float) The learning rate

* alpha — (float) RMSProp decay parameter (default: 0.99)

* 1r_schedule — (str) The type of scheduler for the learning rate update (‘linear’, ‘con-
stant’, ‘double_linear_con’, ‘middle_drop’ or ‘double_middle_drop’)

» verbose — (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug

* seed — (int) Seed for the pseudo-random generators (python, numpy, tensorflow). If None
(default), use random seed.

learn (total_timesteps, callback=None, log_interval=100, th_log_name="A2C', re-
set_num_timesteps=True)
Return a trained model.

Parameters
* total_timesteps — (int) The total number of samples to train on

* callback — (Union[callable, [callable], BaseCallback]) function called at every steps
with state of the algorithm. It takes the local and global variables. If it returns False,
training is aborted. When the callback inherits from BaseCallback, you will have access
to additional stages of the training (training start/end), please read the documentation for
more details.
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* log_interval — (int) The number of timesteps before logging.
* tb_log_name — (str) the name of the run for tensorboard log

* reset_num_timesteps - (bool) whether or not to reset the current timestep number
(used in logging)

Returns (BaseRLModel) the trained model

classmethod load (load_path, env=None, custom_objects=None, **kwargs)
Load the model from file

Parameters
* load_path — (str or file-like) the saved parameter location

* env — (Gym Environment) the new environment to run the loaded model on (can be None
if you only need prediction from a trained model)

* custom_objects — (dict) Dictionary of objects to replace upon loading. If a variable
is present in this dictionary as a key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in keras.models.load_model. Useful when
you have an object in file that can not be deserialized.

* kwargs — extra arguments to change the model when loading

predict (observation, state=None, mask=None, deterministic=False)
Get the model’s action from an observation

Parameters
* observation - (np.ndarray) the input observation
* state — (np.ndarray) The last states (can be None, used in recurrent policies)
* mask — (np.ndarray) The last masks (can be None, used in recurrent policies)
¢ deterministic — (bool) Whether or not to return deterministic actions.

Returns (np.ndarray, np.ndarray) the model’s action and the next state (used in recurrent poli-
cies)

save (save_path, cloudpickle=False)
Save the current parameters to file

Parameters
* save_path — (str or file-like) The save location
* cloudpickle — (bool) Use older cloudpickle format instead of zip-archives.

class neorl.rl.make_env.CreateEnvironment (method, fit, bounds, ncores=I1, mode='max’,
episode_length=50)
A module to construct a fitness environment for certain algorithms that follow reinforcement learning approach
of optimization

Parameters
* method — (str) the supported algorithms, choose either: dgn, ppo, acktr, acer, a2c.
e £it — (function) the fitness function

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ["int', 1, 4], 'x2': ['"float', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

* ncores — (int) number of parallel processors
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* mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

* episode_length — (int): number of individuals to evaluate before resetting the environ-
ment to random initial guess.

class neorl.utils.neorlcalls.RLLogger (check_freq=1, plot_freq=None, n_avg_steps=10,
pngname="history’, save_model=False,
model_name="bestmodel.pkl', save_best_only=True,

verbose=Fualse)
Callback for logging data of RL algorathims (X,y), compatible with: A2C, ACER, ACKTR, DQN, PPO

Parameters
* check_freq - (int) logging frequency, e.g. 1 will record every time step

* plot_freq — (int) frequency of plotting the fitness progress (if None, plotter is deacti-
vated)

* n_avg_steps — (int) if plot_freqis NOT None, then this is the number of timesteps
to group to draw statistics for the plotter (e.g. 10 will group every 10 time steps to estimate
min, max, mean, and std).

* pngname — (str) name of the plot that will be saved if plot_freqis NOT None.

¢ save_model — (bool) whether or not to save the RL neural network model (model is saved
every check_freq)

* model_name - (str) name of the model to be saved if save_model=True

* save_best_only - (bool) if save_model = True, then this flag only saves the
model if the fitness value improves.

* verbose — (bool) print updates to the screen

Example

Train an A2C agent to optimize the 5-D sphere function

from neorl import A2C

from neorl import MlpPolicy

from neorl import RLLogger

from neorl import CreateEnvironment

def Sphere (individual) :
"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
da=1,2,3,...
Range: [-100,100]
Minima: 0

return sum(x++2 for x in individual)

nx=>5
bounds={}
for i in range(l,nx+1):
bounds|['x'+str(i)]=["float', -10, 10]
if _ name_ =='__main__': #use this "if" block for parallel A2C!

(continues on next page)
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(continued from previous page)

#create an enviroment class
env=CreateEnvironment (method='a2c', fit=Sphere,
bounds=bounds, mode='min', episode_length=50)
#create a callback function to log data
cb=RLLogger (check_freg=1)
#create an optimizer object based on the env object
a2c = A2C(MlpPolicy, env=env, n_steps=8, seed=1)
#optimise the enviroment class
a2c.learn(total_timesteps=2000, callback=cb)
#print the best results

print ('~ A2C results ——————————————— ")
print ('The best value of x found:', cb.xbest)
print ('The best value of y found:', cb.rbest)

Notes

* A2C belongs to the actor-critic family, and usually considered as the state-of-the-art in the reinforcement learn-
ing domain. A2C is parallel and supports all types of spaces.

* A2C shows sensitivity to n_steps, vf_coef, ent_coef, and learning_rate. It is always good to
consider tuning these hyperparameters before using for optimization. In particular, n_steps is considered the
most important parameter to tune for A2C. Always start with small n_steps and increase as needed.

* The cost of A2C equals to the total_ timesteps inthe learn function, where the original fitness function
will be accessed total_timesteps times.

* See how A2C is used to solve two common combinatorial problems in 7SP and KP.

Acknowledgment

Thanks to our fellows in stable-baselines, as we used their standalone RL implementation, which is utilized as a
baseline to leverage advanced neuroevolution algorithms.

Hill, Ashley, et al. “Stable baselines.” (2018).

Actor-Critic with Experience Replay (ACER)

Sample Efficient Actor-Critic with Experience Replay (ACER) combines concepts of parallel agents from A2C and
provides a replay memory as in DQN. ACER also includes truncated importance sampling with bias correction,
stochastic dueling network architectures, and a new trust region policy optimization method.

Original paper: https://arxiv.org/abs/1611.01224
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What can you use?

* Multi processing: v
* Discrete spaces: v’
» Continuous spaces:

* Mixed Discrete/Continuous spaces:

Parameters

class neorl.rl.baselines.acer.ACER (policy, env, gamma=0.99, n_steps=20, q_coef=0.5,

ent_coef=0.01, max_grad_norm=10, learn-
ing_rate=0.0007, lr_schedule="linear', buffer_size=5000,
replay_ratio=4, replay_start=1000, verbose=0,

seed=None, _init_setup_model=True)
The ACER (Actor-Critic with Experience Replay) model class

Parameters

* policy — (ActorCriticPolicy or str) The policy model to use (MIpPolicy, CnnPolicy, CnnL-
stmPolicy, ...)

* env — (NEORL environment or Gym environment) The environment to learn with PPO,
either use NEORL method CreateEnvironment (see below) or construct your custom
Gym environment

* gamma — (float) The discount value

* n_steps — (int) The number of steps to run for each environment per update (i.e. batch
size is n_steps * n_env where n_env is number of environment copies running in parallel)

* g_coef — (float) The weight for the loss on the Q value

* ent_coef — (float) The weight for the entropy loss

* max_grad norm - (float) The clipping value for the maximum gradient

* learning_rate — (float) The initial learning rate for the RMS prop optimizer

* 1r_schedule — (str) The type of scheduler for the learning rate update (‘linear’, ‘con-
stant’, ‘double_linear_con’, ‘middle_drop’ or ‘double_middle_drop’)

* buffer_ size — (int) The buffer size in number of steps

* replay_ratio — (float) The number of replay learning per on policy learning on average,
using a poisson distribution

* replay_start — (int) The minimum number of steps in the buffer, before experience
replay starts

* verbose — (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug

* seed — (int) Seed for the pseudo-random generators (python, numpy, tensorflow). If None
(default), use random seed.

learn (total_timesteps, callback=None, log_interval=100, th_log_name="ACER/, re-

set_num_timesteps=True)
Return a trained model.

Parameters
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* total_timesteps — (int) The total number of samples to train on

* callback - (Union[callable, [callable], BaseCallback]) function called at every steps
with state of the algorithm. It takes the local and global variables. If it returns False,
training is aborted. When the callback inherits from BaseCallback, you will have access
to additional stages of the training (training start/end), please read the documentation for
more details.

* log_interval — (int) The number of timesteps before logging.
* tb_log_name — (str) the name of the run for tensorboard log

* reset_num_timesteps — (bool) whether or not to reset the current timestep number
(used in logging)

Returns (BaseRLModel) the trained model

classmethod load (load_path, env=None, custom_objects=None, **kwargs)
Load the model from file

Parameters
* load_path — (str or file-like) the saved parameter location

* env — (Gym Environment) the new environment to run the loaded model on (can be None
if you only need prediction from a trained model)

* custom_objects — (dict) Dictionary of objects to replace upon loading. If a variable
is present in this dictionary as a key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in keras.models.load_model. Useful when
you have an object in file that can not be deserialized.

* kwargs — extra arguments to change the model when loading

predict (observation, state=None, mask=None, deterministic=False)
Get the model’s action from an observation

Parameters
* observation — (np.ndarray) the input observation
* state — (np.ndarray) The last states (can be None, used in recurrent policies)
* mask — (np.ndarray) The last masks (can be None, used in recurrent policies)
e deterministic — (bool) Whether or not to return deterministic actions.

Returns (np.ndarray, np.ndarray) the model’s action and the next state (used in recurrent poli-
cies)

save (save_path, cloudpickle=False)
Save the current parameters to file

Parameters
* save_path — (str or file-like) The save location
* cloudpickle - (bool) Use older cloudpickle format instead of zip-archives.

class neorl.rl.make_env.CreateEnvironment (method, fit, bounds, ncores=1, mode='max’,

episode_length=50)
A module to construct a fitness environment for certain algorithms that follow reinforcement learning approach
of optimization

Parameters

* method — (str) the supported algorithms, choose either: dan, ppo, acktr, acer, a2c.
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e £it — (function) the fitness function

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ["int', 1, 4], 'x2': ['"float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

* ncores — (int) number of parallel processors

* mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

* episode_length - (int): number of individuals to evaluate before resetting the environ-
ment to random initial guess.

class neorl.utils.neorlcalls.RLLogger (check_freq=1, plot_freq=None, n_avg_steps=10,
pngname="history’, save_model=False,
model_name="bestmodel.pkl’, save_best_only=True,

verbose=Fualse)
Callback for logging data of RL algorathims (X,y), compatible with: A2C, ACER, ACKTR, DQN, PPO

Parameters
* check_freq - (int) logging frequency, e.g. 1 will record every time step

* plot_freq — (int) frequency of plotting the fitness progress (if None, plotter is deacti-
vated)

* n_avg_steps — (int) if plot_freqis NOT None, then this is the number of timesteps
to group to draw statistics for the plotter (e.g. 10 will group every 10 time steps to estimate
min, max, mean, and std).

* pngname — (str) name of the plot that will be saved if plot_freqis NOT None.

¢ save_model — (bool) whether or not to save the RL neural network model (model is saved
every check_freq)

* model_name - (str) name of the model to be saved if save_model=True

* save_best_only - (bool) if save_model = True, then this flag only saves the
model if the fitness value improves.

* verbose — (bool) print updates to the screen

Example

Train an ACER agent to optimize the 5-D discrete sphere function

from neorl import ACER

from neorl import MlpPolicy

from neorl import RLLogger

from neorl import CreateEnvironment

def Sphere (individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: 0

mnn

return sum(x+*2 for x in individual)

(continues on next page)
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(continued from previous page)

nx=>5
bounds={}
for i in range(l,nx+1):
bounds['x'"+str(i)]=["int', —-100, 100]
if name  =='_main__ ': #use this "if" block for parallel ACER!

#create an enviroment class
env=CreateEnvironment (method='acer', fit=Sphere,
bounds=bounds, mode='min', episode_length=50)
#create a callback function to log data
cb=RLLogger (check_freg=1)
#create an acer object based on the env object
acer = ACER(MlpPolicy, env=env, n_steps=25, g_coef=0.55, ent_coef=0.02, seed=1)
#optimise the enviroment class
acer.learn(total_timesteps=2000, callback=cb)
#print the best results
print('-——————————————— ACER results ——————————————— ")
print ('The best value of x found:', cb.xbest)
print ('The best value of y found:', cb.rbest)

Notes

* ACER can be observed as the parallel version of DQN with additional enhancements. ACER is also restricted
to discrete spaces.

* ACER shows sensitivity to n_steps, g_coef, and ent_coef. It is always good to consider tuning these
hyperparameters before using for optimization. In particular, n_steps is considered the most important pa-
rameter to tune.

e The cost of ACER equals to the total_timesteps in the learn function, where the original fitness func-
tion will be accessed total_timesteps times.

* See how ACER is used to solve two common combinatorial problems in 7SP and KP.

Acknowledgment

Thanks to our fellows in stable-baselines, as we used their standalone RL implementation, which is utilized as a
baseline to leverage advanced neuroevolution algorithms.

Hill, Ashley, et al. “Stable baselines.” (2018).

Actor Critic using Kronecker-Factored Trust Region (ACKTR)

Actor Critic using Kronecker-Factored Trust Region (ACKTR) uses Kronecker-factored approximate curvature (K-
FAC) for trust region optimization. ACKTR uses K-FAC to allow more efficient inversion of the covariance matrix of
the gradient. ACKTR also extends the natural policy gradient algorithm to optimize value functions via Gauss-Newton
approximation.

Original paper: https://arxiv.org/abs/1708.05144
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What can you use?

* Multi processing: v
* Discrete spaces: v’
 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.rl.baselines.acktr.ACKTR (policy, env, gamma=0.99, n_steps=20, ent_coef=0.01,

vf_coef=0.25, vf fisher_coef=1.0, learn-
ing_rate=0.25, max_grad_norm=0.5, kfac_clip=0.001,
Ir_schedule="linear’, verbose=0, seed=None,

_init_setup_model=True)
The ACKTR (Actor Critic using Kronecker-Factored Trust Region) model class4

Parameters
* policy — (ActorCriticPolicy or str) The policy model to use (e.g. MlpPolicy)

* env — (NEORL environment or Gym environment) The environment to learn with PPO,
either use NEORL method CreateEnvironment (see below) or construct your custom
Gym environment

* gamma — (float) Discount factor

* n_steps — (int) The number of steps to run for each environment

* ent_coef — (float) The weight for the entropy loss

» vf_coef — (float) The weight for the loss on the value function

* vE£_fisher coef — (float) The weight for the fisher loss on the value function
* learning_rate — (float) The initial learning rate for the RMS prop optimizer
* max_grad_norm — (float) The clipping value for the maximum gradient

* kfac_clip — (float) gradient clipping for Kullback-Leibler

* 1r_schedule — (str) The type of scheduler for the learning rate update (‘linear’, ‘con-
stant’, ‘double_linear_con’, ‘middle_drop’ or ‘double_middle_drop’)

* verbose — (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug

* seed — (int) Seed for the pseudo-random generators (python, numpy, tensorflow). If None
(default), use random seed.

learn (total_timesteps, callback=None, log_interval=100, th_log_name="ACKTR’, re-

set_num_timesteps=True)
Return a trained model.

Parameters
* total_timesteps — (int) The total number of samples to train on

* callback — (Union[callable, [callable], BaseCallback]) function called at every steps
with state of the algorithm. It takes the local and global variables. If it returns False,
training is aborted. When the callback inherits from BaseCallback, you will have access
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to additional stages of the training (training start/end), please read the documentation for
more details.

* log_interval — (int) The number of timesteps before logging.
* tb_log_name — (str) the name of the run for tensorboard log

* reset_num_timesteps — (bool) whether or not to reset the current timestep number
(used in logging)

Returns (BaseRLModel) the trained model

classmethod load (load_path, env=None, custom_objects=None, **kwargs)
Load the model from file

Parameters
* load path — (str or file-like) the saved parameter location

* env — (Gym Environment) the new environment to run the loaded model on (can be None
if you only need prediction from a trained model)

* custom_objects — (dict) Dictionary of objects to replace upon loading. If a variable
is present in this dictionary as a key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in keras.models.load_model. Useful when
you have an object in file that can not be deserialized.

* kwargs — extra arguments to change the model when loading

predict (observation, state=None, mask=None, deterministic=False)
Get the model’s action from an observation

Parameters
* observation — (np.ndarray) the input observation
* state — (np.ndarray) The last states (can be None, used in recurrent policies)
* mask — (np.ndarray) The last masks (can be None, used in recurrent policies)
¢ deterministic — (bool) Whether or not to return deterministic actions.

Returns (np.ndarray, np.ndarray) the model’s action and the next state (used in recurrent poli-
cies)

save (save_path, cloudpickle=False)
Save the current parameters to file

Parameters
* save_path — (str or file-like) The save location
* cloudpickle — (bool) Use older cloudpickle format instead of zip-archives.

class neorl.rl.make_env.CreateEnvironment (method, fit, bounds, ncores=1, mode='max’,
episode_length=50)
A module to construct a fitness environment for certain algorithms that follow reinforcement learning approach
of optimization

Parameters
* method — (str) the supported algorithms, choose either: dgn, ppo, acktr, acer, a2c.

e £it — (function) the fitness function
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* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1"': ["int', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

* ncores — (int) number of parallel processors

* mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

* episode_length — (int): number of individuals to evaluate before resetting the environ-
ment to random initial guess.

class neorl.utils.neorlcalls.RLLogger (check_freq=1, plot_freq=None, n_avg_steps=10,
pngname="history’, save_model=False,
model_name="bestmodel.pkl', save_best_only=True,

verbose=Fualse)
Callback for logging data of RL algorathims (x,y), compatible with: A2C, ACER, ACKTR, DQN, PPO

Parameters
* check_freq - (int) logging frequency, e.g. 1 will record every time step

* plot_freq - (int) frequency of plotting the fitness progress (if None, plotter is deacti-
vated)

* n_avg_steps — (int) if plot_freqis NOT None, then this is the number of timesteps
to group to draw statistics for the plotter (e.g. 10 will group every 10 time steps to estimate
min, max, mean, and std).

* pngname - (str) name of the plot that will be saved if plot_freqis NOT None.

¢ save_model — (bool) whether or not to save the RL neural network model (model is saved
every check_freq)

* model_name - (str) name of the model to be saved if save_model=True

* save_best_only — (bool) if save_model = True, then this flag only saves the
model if the fitness value improves.

* verbose — (bool) print updates to the screen

Example

Train an ACKTR agent to optimize the 5-D sphere function

from neorl import ACKTR

from neorl import MlpPolicy

from neorl import RLLogger

from neorl import CreateEnvironment

def Sphere (individual) :
"""Sphere test objective function.
F(x) = sum _{i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: 0

return sum(x++2 for x in individual)

(continues on next page)
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(continued from previous page)

bounds={}
for i in range(l,nx+1):
bounds['x'"+str(i)]=["float', -10, 10]
if _ name_ _=='__main__': #use this "if" block for parallel ACKTR!

#create an enviroment class

env=CreateEnvironment (method="acktr', fit=Sphere,
bounds=bounds, mode='min', episode_length=50)

#create a callback function to log data

cb=RLLogger (check_freg=1)

#create an acktr object based on the env object

acktr = ACKTR(MlpPolicy, env=env, n_steps=12, seed=1)

#optimise the enviroment class

acktr.learn(total_timesteps=2000, callback=cb)

#print the best results

print ('-————————————— ACKTR results ——————————————— ")

print ('The best value of x found:', cb.xbest)

print ('The best value of y found:', cb.rbest)

Notes

* ACKTR belongs to the actor-critic family of reinforcement learning. ACKTR uses some methods to increase the
efficiency of reinforcement learning gradient-based search. ACKTR is parallel and supports all types of spaces.

¢ ACKTR shows sensitivity to n_steps, vf_fisher_coef, vf_coef, and learning_rate. Itis always
good to consider tuning these hyperparameters before using for optimization. In particular, n_steps is con-
sidered the most important parameter to tune for ACKTR. Always start with small n_steps and increase as
needed.

* The cost of ACKTR equals to the total_ timesteps in the learn function, where the original fitness
function will be accessed total_timesteps times.

* See how ACKTR is used to solve two common combinatorial problems in 7SP and KP.

Acknowledgment

Thanks to our fellows in stable-baselines, as we used their standalone RL implementation, which is utilized as a
baseline to leverage advanced neuroevolution algorithms.

Hill, Ashley, et al. “Stable baselines.” (2018).

Deep Q Learning (DQN)

Deep Q Network (DQN) and its extensions (Double-DQN, Dueling-DQN, Prioritized Experience Replay).
Original papers:

* DQN paper: https://arxiv.org/abs/1312.5602

* Dueling DQN: https://arxiv.org/abs/1511.06581

* Double-Q Learning: https://arxiv.org/abs/1509.06461

* Prioritized Experience Replay: https://arxiv.org/abs/1511.05952
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What can you use?

e Multi processing:

* Discrete spaces: v/

* Continuous spaces:

* Mixed Discrete/Continuous spaces:

Parameters

class neorl.rl.baselines.deepq.DQON (policy, env, gamma=0.99, learning_rate=0.0005,

buffer_size=50000, exploration_fraction=0.1,
eps_final=0.02, eps_init=1.0, train_freq=1,
batch_size=32, learning_starts=1000, tar-

get_network_update_freq=500, prioritized_replay=True,
verbose=0, seed=None, _init_setup_model=True)

The DQN model class

Parameters

policy — (DQNPolicy or str) The policy model to use (MlpPolicy, CnnPolicy, LnMlpPol-
icy, ...)

env — (NEORL environment or Gym environment) The environment to learn with PPO,
either use NEORL method CreateEnvironment (see below) or construct your custom
Gym environment

gamma — (float) discount factor
learning_rate — (float) learning rate for adam optimizer
buffer_size — (int) size of the replay buffer

exploration_fraction — (float) fraction of entire training period over which the ex-
ploration rate is annealed

eps_final — (float) final value of random action probability (e.g. 0.05)

eps_init — (float) initial value of random action probability (e.g. 1.0)

train_freq - (int) update the model every train_freq steps. set to None to disable print-
ing

batch_size — (int) size of a batched sampled from replay buffer for training

learning_starts — (int) how many steps of the model to collect transitions for before
learning starts

target_network update_freq - (int) update the target network every tar-
get_network_update_freq steps.

prioritized_replay - (bool) if True prioritized experience replay buffer will be used.
verbose — (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug

seed - (int) Seed for the pseudo-random generators (python, numpy, tensorflow). If None
(default), use random seed.

learn (fotal_timesteps, callback=None, log_interval=100, tb_log_name="DQN’, re-

set_num_timesteps=True, replay_wrapper=None)
Return a trained model.
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Parameters
* total_timesteps — (int) The total number of samples to train on

* callback - (Union[callable, [callable], BaseCallback]) function called at every steps
with state of the algorithm. It takes the local and global variables. If it returns False,
training is aborted. When the callback inherits from BaseCallback, you will have access
to additional stages of the training (training start/end), please read the documentation for
more details.

* log_interval - (int) The number of timesteps before logging.
* tb_log_name — (str) the name of the run for tensorboard log

* reset_num_timesteps — (bool) whether or not to reset the current timestep number
(used in logging)

Returns (BaseRLModel) the trained model

classmethod load (load_path, env=None, custom_objects=None, **kwargs)
Load the model from file

Parameters
* load_path — (str or file-like) the saved parameter location

* env — (Gym Environment) the new environment to run the loaded model on (can be None
if you only need prediction from a trained model)

* custom_objects — (dict) Dictionary of objects to replace upon loading. If a variable
is present in this dictionary as a key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in keras.models.load_model. Useful when
you have an object in file that can not be deserialized.

* kwargs — extra arguments to change the model when loading

predict (observation, state=None, mask=None, deterministic=True)
Get the model’s action from an observation

Parameters
* observation — (np.ndarray) the input observation
* state — (np.ndarray) The last states (can be None, used in recurrent policies)
* mask — (np.ndarray) The last masks (can be None, used in recurrent policies)
e deterministic — (bool) Whether or not to return deterministic actions.

Returns (np.ndarray, np.ndarray) the model’s action and the next state (used in recurrent poli-
cies)

save (save_path, cloudpickle=False)
Save the current parameters to file

Parameters
* save_path — (str or file-like) The save location
* cloudpickle — (bool) Use older cloudpickle format instead of zip-archives.

class neorl.rl.make_env.CreateEnvironment (method, fit, bounds, ncores=1, mode='max’,

episode_length=50)
A module to construct a fitness environment for certain algorithms that follow reinforcement learning approach

of optimization

Parameters
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class neorl.

method — (str) the supported algorithms, choose either: dgn, ppo, acktr, acer, a2c.
f£it — (function) the fitness function

bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={"'xl"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.87,
'x3': ['float', 2.2, 6.2]}

ncores — (int) number of parallel processors

mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

episode_length — (int): number of individuals to evaluate before resetting the environ-
ment to random initial guess.

utils.neorlcalls.RLLogger (check_freq=1, plot_freq=None, n_avg_steps=10,

pngname="history', save_model=False,
model_name="bestmodel.pkl', save_best_only=True,
verbose=False)

Callback for logging data of RL algorathims (x,y), compatible with: A2C, ACER, ACKTR, DQN, PPO

Parameters

Example

check_freq - (int) logging frequency, e.g. 1 will record every time step

plot_freq — (int) frequency of plotting the fitness progress (if None, plotter is deacti-
vated)

n_avg_steps — (int) if plot_freqis NOT None, then this is the number of timesteps
to group to draw statistics for the plotter (e.g. 10 will group every 10 time steps to estimate
min, max, mean, and std).

pngname — (str) name of the plot that will be saved if plot_freqis NOT None.

save_model — (bool) whether or not to save the RL neural network model (model is saved
every check_freq)

model_name — (str) name of the model to be saved if save_model=True

save_best_only — (bool) if save_model = True, then this flag only saves the
model if the fitness value improves.

verbose - (bool) print updates to the screen

Train a DQN agent to optimize the 5-D discrete sphere function

from
from
from
from

neorl import DQON

neorl import DQNPolicy

neorl import RLLogger

neorl import CreateEnvironment

def Sphere (individual) :
"""Sphere test objective function.

mmn

F(x) = sum {i=1}"d xi"2
d=1,2,3,...

Range: [-100,100]
Minima: 0

(continues on next page)
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(continued from previous page)

#print (individual)
return sum(x++2 for x in individual)

nx=>5
bounds={}
for i in range(l,nx+1):

bounds['x'+str(i)]=["int"', -100, 100]

#create an enviroment class

env=CreateEnvironment (method="dgn',
fit=Sphere,
bounds=bounds,
mode="min"',
episode_length=50)

#create a callback function to log data

cb=RLLogger (check_freqg=1)

#create a RL object based on the env object

dgn = DQN (DQNPolicy, env=env, seed=1)

#optimise the enviroment class

dgn.learn (total_timesteps=2000, callback=cb)

#print the best results

print ('——————————————— DON results ————————————-

print ('The best value of x found:', cb.xbest)
print ('The best value of y found:', cb.rbest)

Notes

* DQN is the most limited RL algorithm in the package with no multiprocessing and only restricted to discrete
spaces. Nevertheless, DQN is considered the first and the heart of many deep RL algorithms.

* For parallel RL algorithm with Q-value support like DQN, use ACER.

« DQN shows sensitivity to exploration_fraction,

train_freq, and

target_network_update_freq. It is always good to consider tuning these hyperparameters be-

fore using for optimization.

e Activating prioritized_replay seems to improve DQN performance.

* The cost for DQN equals to the total_timesteps inthe learn function, where the original fitness function

will be accessed total_timesteps times.

* See how DQN is used to solve two common combinatorial problems in 7SP and KP.

Acknowledgment

Thanks to our fellows in stable-baselines, as we used their standalone RL implementation, which is utilized as a

baseline to leverage advanced neuroevolution algorithms.

Hill, Ashley, et al. “Stable baselines.” (2018).
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Proximal Policy Optimisation (PPO)

The Proximal Policy Optimization algorithm combines ideas from A2C (having multiple workers) and TRPO (it uses
a trust region to improve the actor). The idea is that after an update, the new policy should be not be too far from the
old policy. For that, PPO uses clipping to avoid too large update.

Original paper: https://arxiv.org/abs/1707.06347

What can you use?

* Multi processing: v/
* Discrete spaces: v’
« Continuous spaces: v’

» Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.rl.baselines.ppo2.PPO2 (policy, env, gamma=0.99, n_steps=128,
ent_coef=0.01, learning_rate=0.00025, vf_coef=0.5,
max_grad_norm=0.5, lam=0.95, nminibatches=4,

noptepochs=4, cliprange=0.2, verbose=0, seed=None,
_init_setup_model=True)
Proximal Policy Optimization algorithm

Parameters
* policy — (ActorCriticPolicy or str) The policy model to use (e.g. MlpPolicy)

* env — (NEORL environment or Gym environment) The environment to learn with PPO,
either use NEORL method CreateEnvironment (see below) or construct your custom
Gym environment

* gamma — (float) Discount factor

* n_steps — (int) The number of steps to run for each environment per update (i.e. batch
size is n_steps * n_env where n_env is number of environment copies running in parallel)

* ent_coef — (float) Entropy coefficient for the loss calculation

* learning_rate — (float or callable) The learning rate, it can be a function

* vf_coef — (float) Value function coefficient for the loss calculation

* max_grad_norm — (float) The maximum value for the gradient clipping

* lam — (float) Factor for trade-off of bias vs variance for Generalized Advantage Estimator

* nminibatches — (int) Number of training minibatches per update. For recurrent policies,
the number of environments run in parallel should be a multiple of nminibatches.

* noptepochs — (int) Number of epoch when optimizing the surrogate
* cliprange — (float or callable) Clipping parameter, it can be a function
* verbose - (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug

* seed — (int) Seed for the pseudo-random generators (python, numpy, tensorflow). If None
(default), use random seed.
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learn (fotal_timesteps, callback=None, log_interval=1, tb_log_name="PPO?2’, re-

set_num_timesteps=True)
Return a trained model.

Parameters
* total_timesteps — (int) The total number of samples to train on

* callback - (Union[callable, [callable], BaseCallback]) function called at every steps
with state of the algorithm. It takes the local and global variables. If it returns False,
training is aborted. When the callback inherits from BaseCallback, you will have access
to additional stages of the training (training start/end), please read the documentation for
more details.

* log_interval — (int) The number of timesteps before logging.
* tb_log_name — (str) the name of the run for tensorboard log

* reset_num_timesteps — (bool) whether or not to reset the current timestep number
(used in logging)

Returns (BaseRLModel) the trained model

classmethod 1load (load_path, env=None, custom_objects=None, **kwargs)
Load the model from file

Parameters
* load_path — (str or file-like) the saved parameter location

* env — (Gym Environment) the new environment to run the loaded model on (can be None
if you only need prediction from a trained model)

* custom_objects — (dict) Dictionary of objects to replace upon loading. If a variable
is present in this dictionary as a key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in keras.models.load_model. Useful when
you have an object in file that can not be deserialized.

* kwargs — extra arguments to change the model when loading

predict (observation, state=None, mask=None, deterministic=False)
Get the model’s action from an observation

Parameters
* observation — (np.ndarray) the input observation
* state — (np.ndarray) The last states (can be None, used in recurrent policies)
* mask — (np.ndarray) The last masks (can be None, used in recurrent policies)
¢ deterministic — (bool) Whether or not to return deterministic actions.

Returns (np.ndarray, np.ndarray) the model’s action and the next state (used in recurrent poli-
cies)

save (save_path, cloudpickle=False)
Save the current parameters to file

Parameters
* save_path — (str or file-like) The save location

* cloudpickle - (bool) Use older cloudpickle format instead of zip-archives.
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class neorl.rl.make_env.CreateEnvironment (method, fit, bounds, ncores=1, mode='max’,

episode_length=50)

A module to construct a fitness environment for certain algorithms that follow reinforcement learning approach
of optimization

Parameters

* method — (str) the supported algorithms, choose either: dgn, ppo, acktr, acer, a2c.
e £it — (function) the fitness function

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ['int"', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

* ncores — (int) number of parallel processors

* mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

* episode_length — (int): number of individuals to evaluate before resetting the environ-
ment to random initial guess.

class neorl.utils.neorlcalls.RLLogger (check_freq=1, plot freq=None, n_avg_steps=10,

pngname="history', save_model=False,
model_name="bestmodel.pkl', save_best_only=True,
verbose=False)

Callback for logging data of RL algorathims (x,y), compatible with: A2C, ACER, ACKTR, DQN, PPO

Parameters

Example

* check_freq - (int) logging frequency, e.g. 1 will record every time step

* plot_freq — (int) frequency of plotting the fitness progress (if None, plotter is deacti-
vated)

* n_avg_steps —(int) if plot_freqis NOT None, then this is the number of timesteps
to group to draw statistics for the plotter (e.g. 10 will group every 10 time steps to estimate
min, max, mean, and std).

* pngname — (str) name of the plot that will be saved if plot_freqis NOT None.

* save_model — (bool) whether or not to save the RL neural network model (model is saved
every check_freq)

* model_name — (str) name of the model to be saved if save_model=True

* save_best_only - (bool) if save_model = True, then this flag only saves the
model if the fitness value improves.

* verbose — (bool) print updates to the screen

Train a PPO agent to optimize the 5-D sphere function

from
from
from
from

neorl
neorl
neorl
neorl

import PPO2

import MlpPolicy

import RLLogger

import CreateEnvironment

def Sphere (individual) :

(continues on next page)
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"""Sphere test objective function.
F(x) = sum _{i=1}"d xi"2
d=1,2,3,...

Range: [-100,100]
Minima: O
mmrn

return sum(x++2 for x in individual)

nx=>5
bounds={}
for i in range(l,nx+1):
bounds['x'"+str(i)]=["float', -10, 10]
if name_ =='_ _main_ ': #use this "if" block for parallel PPO!

#create an enviroment class
env=CreateEnvironment (method="ppo', fit=Sphere,
bounds=bounds, mode='min', episode_length=50)

#create a callback function to log data

cb=RLLogger (check_freg=1)

#create a RL object based on the env object

ppo = PPO2 (MlpPolicy, env=env, n_steps=12, seed=1l)
#optimise the enviroment class
ppo.learn(total_timesteps=2000, callback=cb)

#print the best results

print ('-———————-——— PPO results ——————————————— ")
print ('The best value of x found:', cb.xbest)

print ('The best value of y found:', cb.rbest)

Notes

* PPO is the most popular RL algorithm due to its robustness. PPO is parallel and supports all types of spaces.

* PPO shows sensitivity to n_steps, vE_coef, ent_coef, and lam. It is always good to consider tuning
these hyperparameters before using for optimization. In particular, n_steps is considered the most important
parameter to tune for PPO. Always start with small n_steps and increase as needed.

e For PPO, always ensure that ncores * n_steps is divisible by nminibatches. For example, if
nminibatches=4, then ncores=12/n_steps=5 setting works, while ncores=5/n_steps=>5 will fail.
For tuning purposes, it is recommended to choose ncores divisible by nminibatches so that you can
change n_steps more freely.

* The cost of PPO equals to the total_timesteps inthe learn function, where the original fitness function
will be accessed total_timesteps times.

* See how PPO is used to solve two common combinatorial problems in 7SP and KP.
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2.2.2 Evolutionary and Swarm Algorithms
Evolution Strategies (i, \) (ES)

A module for the evolution strategies (u, A) with adaptive strategy vectors.

Original paper: Béack, T., Fogel, D. B., Michalewicz, Z. (Eds.). (2018). Evolutionary computation 1: Basic algorithms
and operators. CRC press.

new generation
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What can you use?

* Multi processing: v
* Discrete spaces: v’
« Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.es.ES (mode, bounds, fit, lambda_=60, mu=30, cxmode="cx2point', alpha=0.5,
cxpb=0.6, mutpb=0.3, smin=0.01, smax=0.5, clip=True, ncores=I,

seed=None, **kwargs)
Parallel Evolution Strategies

Parameters

* mode — (str) problem type, either min for minimization problem or max for maximization
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bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1"': ["int', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

* lambda_ - (int) total number of individuals in the population
* mu — (int): number of individuals to survive to the next generation, mu < lambda_

* cxmode — (str): the crossover mode, either ‘cx2point’ or ‘blend’

alpha — (float) Extent of the blending between [0,1], the blend crossover randomly selects
a child in the range [x1-alpha(x2-x1), x2+alpha(x2-x1)] (Only used for cxmode="blend”)

* cxpb — (float) population crossover probability between [0,1]

mutpb — (float) population mutation probability between [0,1]
* smin — (float): minimum bound for the strategy vector

* smax — (float): maximum bound for the strategy vector

ncores — (int) number of parallel processors
* seed - (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the ES algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list of lists) the initial position of the swarm particles
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and a list of fitness history)

Example

from neorl import ES

#Define the fitness function
def FIT (individual) :

"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3,...

Range: [-100,100]
Minima: 0
mmwn

check=all ([item >= BOUNDS|['x'+str(i+1)][1] for i,item in enumerate (individual)])_
—and all ([item <= BOUNDS|['x'+str(i+1l)][2] for i,item in enumerate (individual)])
if not check:
raise Exception ('—--error check fails')
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str (i) ]=["'float', -100, 100]

(continues on next page)
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es=ES (mode="'min', bounds=BOUNDS, fit=FIT, lambda_=80, mu=40, mutpb=0.1,
cxmode="blend', cxpb=0.7, ncores=1, seed=1)
x_best, y_best, es_hist=es.evolute (ngen=5, verbose=1)

Notes

 Too large population mutation rate mutpb could destroy the population, the recommended range for this vari-
able is between 0.01-0.4.

* Too large smax will allow the individual to be perturbed in a large rate.
* Too small cxpb and mut pb reduce ES exploration, and increase the likelihood of falling in a local optima.
 Usually, population size 1ambda__ between 60-100 shows good performance along with mu=0.5+1ambda_.

* Look for an optimal balance between lambda_ and ngen, it is recommended to minimize population size to
allow for more generations.

¢ Total number of cost evaluations for ES is lambda_ * (ngen + 1).

e cxmode="'blend"' with alpha=0.5 may perform better than cxmode="cx2point"'.

Particle Swarm Optimisation (PSO)

A module for particle swarm optimisation with three different speed mechanisms.
Original papers:

* Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. In: Proceedings of ICNN’95-international
conference on neural networks (Vol. 4, pp. 1942-1948), IEEE.

* Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In: 1997 IEEE
International conference on systems, man, and cybernetics. Computational cybernetics and simulation (Vol. 5,
pp- 4104-4108), IEEE.

* Clerc, M., Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional
complex space. IEEE transactions on Evolutionary Computation, 6(1), 58-73.
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What can you use?

* Multi processing: v’
* Discrete spaces: v’
* Continuous spaces: v’

» Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.pso.PSO (mode, bounds, fit, npar=50, c1=2.05, c2=2.05, speed_mech="constric’,

ncores=1, seed=None)
Parallel Particle Swarm Optimisaion (PSO) module

Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l': ['int', 1, 41, 'x2': ['float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

e fit — (function) the fitness function

* npar — (int) number of particles in the swarm
* c1 — (float) cognitive speed constant

* c2 — (float) social speed constant

* speed_mech — (str) type of speed mechanism to update particle velocity, choose between
constric, timew, globw.

42 Chapter 2. User Guide



NEORL Documentation, Release 1.8.1b

* ncores — (int) number of parallel processors
* seed — (int) random seed for sampling

evolute (ngen, xO=None, verbose=False, **kwargs)
This function evolutes the PSO algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list of lists) the initial position of the swarm particles
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and a list of fitness history)

Example

from neorl import PSO

#Define the fitness function
def FIT(individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: O
y=sum (x*+2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={ }

for i in range(l,nx+1):
BOUNDS|['x'+str(i)]=["'float', -100, 100]

#setup and evolute PSO

pso=PSO (mode="min', bounds=BOUNDS, fit=FIT, cl=2.05, c2=2.1, npar=50,
speed_mech='constric', ncores=1, seed=1)

x_best, y_best, pso_hist=pso.evolute (ngen=100, verbose=1)

Notes

* Always try the three speed mechanisms via speed_mech when you solve any problem.
* Keep cl, c2 > 2.0 when using speed_mech="constric"'.
* speed_mech=timew uses a time-dependent inertia factor, where inertia w is annealed over PSO generations.

* speed_mech=globw uses a ratio of swarm global position to local position to define inertia factor, and this
factor is updated every generation.

» Look for an optimal balance between npar and ngen, it is recommended to minimize particle size to allow for
more generations.

¢ Total number of cost evaluations for PSO is npar * (ngen + 1).
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Heterogeneous comprehensive learning particle swarm optimization (HCLPSO)

A module for parallel heterogeneous comprehensive learning particle swarm optimization with both constriction and
inertia weight support. HCLPSO leverages two subpopulations, one focuses on exploration (you) and one focuses on
exploitation (your friend).

Original paper: Lynn, N., Suganthan, P. N. (2015). Heterogeneous comprehensive learning particle swarm optimiza-
tion with enhanced exploration and exploitation. Swarm and Evolutionary Computation, 24, 11-24.

What can you use?

* Multi processing: v
* Discrete spaces: v’
* Continuous spaces: v’

» Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.hclpso.HCLPSO (mode, bounds, fit, gl=15, g2=25, int_transform='nearest_int',

ncores=1, seed=None)
Heterogeneous comprehensive learning particle swarm optimization (HCLPSO)

Parameters
* mode — (str) problem type, either min for minimization problem or max for maximization

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

» £it — (function) the fitness function
* gl — (int): number of particles in the exploration group
* g2 — (int): number of particles in the exploitation group (total swarm size is g1 + g2)

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors (must be <= gl+g2)
* seed — (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the HCLPSO algorithm for a number of generations.

Parameters
* ngen — (int) number of generations to evolute
» x0 — (list of lists) initial position of the particles (must be of same size as g1 + g2)

* verbose — (bool) print statistics to screen
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Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import HCLPSO

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
da=1,2,3,...
Range: [-100,100]
Minima: O
y=sum (x*+2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'"+str(i)]=["float', —-100, 100]

#setup and evolute HCLPSO
hclpso=HCLPSO (mode="'min', bounds=BOUNDS, gl=15, g2=25, fit=FIT, ncores=1, seed=1)
x_best, y_best, hclpso_hist=hclpso.evolute (ngen=120, verbose=1)

Notes

* The number of particles in the exploration subgroup (g1) and exploitation subgroup (g2) are the only hyperpa-
rameters for HCLPSO. In the original algorithm, g1 tends to be smaller than g2.

* HCLPSO provides time dependent (annealing) behavior for all major PSO hyperparameters over the number
of search generations (ngen). The cognitive speed constant (c1) is linearly annealed from 2.5-0.5, social
speed constant (c2) is annealed from 0.5-2.5, inertia weight (w) is annealed from 0.99-0.2, while constriction
coefficient (K) is annealed from 3-1.5. Therefore, the HCLPSO user does not need to tune these values.

* Look for an optimal balance between g1, g2, and ngen, it is recommended to minimize particle size to allow
for more generations.

 Total number of cost evaluations for PSOis (g1 + g2) * (ngen + 1).

Differential Evolution (DE)

A module for differential evolution (DE) that optimizes a problem by iteratively trying to improve a candidate solution.
DE maintains the population of candidate solutions and creating new candidate solutions by combining existing ones
according to simple combination methods. The candidate solution with the best score/fitness is reported by DE.

Original paper: Storn, Rainer, and Kenneth Price. “Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces.” Journal of global optimization 11.4 (1997): 341-359.
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What can you use?

* Multi processing: v
* Discrete spaces: v’
 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.de.DE (mode, bounds, fit, npop=50, F=0.5, CR=0.3, int_transform='nearest_int',

ncores=1, seed=None, **kwargs)
Parallel Differential Evolution

Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1"': ["int', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

e fit — (function) the fitness function

* npop — (int) number of individuals in the population
* F — (float) differential/mutation weight between [0,2]
* CR — (float) crossover probability between [0,1]

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors
* seed - (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the DE algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
e x0 — (list of lists) the initial individuals of the population
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and a list of fitness history)
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Example

from neorl import DE

#Define the fitness function
def FIT (individual) :

"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3,...

Range: [-100,100]
Minima: 0
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str(i)]=["'float', -100, 100]

de=DE (mode="'min', bounds=BOUNDS, fit=FIT, npop=60, F=0.5, CR=0.7, ncores=1l, seed=1)
x_best, y_best, de_hist=de.evolute (ngen=100, verbose=1)

Notes

* Start with a crossover probability CR considerably lower than one (e.g. 0.2-0.3). If no convergence is achieved,
increase to higher levels (e.g. 0.8-0.9)

* F is usually chosen between [0.5, 1].
* The higher the population size npop, the lower one should choose the weighting factor F
* You may start with npop =10*d, where d is the number of input parameters to optimise (degrees of freedom).

 Total number of cost evaluations for DEis 2 * npop * ngen.

Exponential Natural Evolution Strategies (XNES)

A module for the exponential natural evolution strategies with adaptive sampling.

Original paper: Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., Schmidhuber, J. (2010). Exponential natural evolu-
tion strategies. In: Proceedings of the 12th annual conference on Genetic and evolutionary computation (pp. 393-400).

What can you use?

* Multi processing: v
* Discrete spaces:
* Continuous spaces: v’

* Mixed Discrete/Continuous spaces:
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Parameters

class neorl.evolu.xnes.XNES (mode, bounds, fit, A=None, npop=None, eta_mu=1.0,

eta_sigma=None, eta_Bmat=None, adapt_sampling=False,
ncores=1, seed=None)

Exponential Natural Evolution Strategies

Parameters

mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ['int"', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

f£it — (function) the fitness function

npop — (int) total number of individuals in the population (default: if None, it will make an
approximation, see Notes below)

A — (np.array): initial guess of the covariance matrix A (default: identity matrix, see Notes
below)

eta_mu - (float) learning rate for updating the center of the search distribution mu (see
Notes below)

eta_sigma — (float) learning rate for updating the step size sigma (default: if None, it
will make an approximation, see Notes below)

eta_ Bmat — (float) learning rate for updating the normalized transformation matrix B (de-
fault: if None, it will make an approximation, see Notes below)

adapt_sampling — (bool): activate the adaption sampling option
ncores — (int) number of parallel processors

seed — (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the XNES algorithm for number of generations.

Parameters

* ngen — (int) number of generations to evolute
* x0 — (list) initial guess for the search (must be of same size as 1en (bounds))

* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import XNES

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
d=1,2,3,...

(continues on next page)
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(continued from previous page)

Range: [-100,100]
Minima: 0
mmwn
y=sum (x*+2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str(i)]=["'float', -100, 100]

xnes=XNES (mode="min', bounds=BOUNDS, fit=FIT, npop=50, eta_mu=0.9,
eta_sigma=0.25, adapt_sampling=True, ncores=1, seed=1)
x_best, y_best, xnes_hist=xnes.evolute(ngen=100, x0=[25,25,25,25,25], verbose=1)

Notes

¢ XNES is controlled by three major search parameters: the center of the search distribution x (mu), the step size
o (sigma), and the normalized transformation matrix B (B) .

 The user provides initial guess of the covariance matrix A using the argument A. XNES applies A = ¢.B to
determine the initial step size o (sigma) and the initial transformation matrix B (B).

* If A is not provided, XNES starts from an identity matrix of size d, i.e. np.eye (d), where d is the size of the
parameter space.

¢ If npop is None, the following formula is used: npop = Integer{4 + [3log(d)]}, where d is the size of the
parameter space.

* The center of the search distribution p (mu) is updated by the learning rate et a_mu.

* The step size o (sigma) is updated by the learning rate eta_sigma. If eta_sigma is None, the following

formula is used: eta_sigma = %%jgd), where d is the size of the parameter space.

e The normalized transformation matrix B (B) is updated by the learning rate eta_Bmat. If eta_Bmat is
None, the following formula is used: eta_Bmat = %%\/‘q&(d), where d is the size of the parameter space.
* Activating the option adapt_sampling may help improving the performance of XNES.

* Look for an optimal balance between npop and ngen, it is recommended to minimize population size to allow
for more generations.

¢ Total number of cost evaluations for XNES is npop * ngen.

Grey Wolf Optimizer (GWO)

A module for the Grey Wolf Optimizer with parallel computing support.

Original paper: Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering
software, 69, 46-61.
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What can you use?

* Multi processing: v
* Discrete spaces: v’
 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.gwo.GWO (mode, bounds, fit, nwolves=35, int_transform='nearest_int', ncores=1,

seed=None)
Grey Wolf Optimizer

Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ['int', 1, 41, 'x2': ['float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

e fit — (function) the fitness function
* nwolves — (int): number of the grey wolves in the group

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors (must be <= nwolves)

* seed — (int) random seed for sampling
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evolute (ngen, xO=None, verbose=False, **kwargs)
This function evolutes the GWO algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list of lists) initial position of the wolves (must be of same size as nwolves)
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import GWO
import matplotlib.pyplot as plt

#Define the fitness function
def FIT (individual) :

"""Sphere test objective function.
F(x) = sum _{i=1}"d xi"2
d=1,2,3, ...

Range: [-100,100]
Minima: 0
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'"+str(i)]=["float', -100, 100]

nwolves=5
gwo=GWO (mode="min', £fit=FIT, bounds=BOUNDS, nwolves=nwolves, ncores=1, seed=1l)

x_best, y_best, gwo_hist=gwo.evolute (ngen=100, verbose=1)

# ,,,,,

#or with fixed initial guess for all wolves (uncomment below)
# ,,,,,

#x0=[[-90, -85, -80, 70, 90] for i in range (nwolves)]
#x_best, y_best, gwo_hist=gwo.evolute (ngen=100, x0=x0)

plt.figure()

plt.plot (gwo_hist['alpha wolf'], label='alpha wolf'")
plt.plot (gwo_hist['beta wolf'], label='beta wolf')
plt.plot (gwo_hist['delta wolf'], label='delta wolf'")
plt.plot (gwo_hist['fitness'], label='best')
plt.xlabel ('Generation')

plt.ylabel ('Fitness')

plt.legend()

plt.show ()
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Notes

GWO assigns the best fitness to the first wolf (called Alpha), second best fitness to Beta wolf, third best fitness
to Delta wolf, while the remaining wolves in the group are called Omega, which follow the leadership and
position of Alpha, Beta, and Delta.

ncores argument evaluates the fitness of all wolves in the group in parallel. Therefore, set ncores <=
nwolves for most optimal resource allocation.

Look for an optimal balance between nwolves and ngen, it is recommended to minimize the number of
nwolves to allow for more updates and more generations.

Total number of cost evaluations for GWO is nwolves * ngen.

Simulated Annealing (SA)

A module for parallel Simulated Annealing. A Synchronous Approach with Occasional Enforcement of Best Solution.

Original paper: Onbasoglu, E., Ozdamar, L. (2001). Parallel simulated annealing algorithms in global optimization.
Journal of global optimization, 19(1), 27-50..

What can you use?

Multi processing: v/
Discrete spaces: v’
Continuous spaces: v’

Mixed Discrete/Continuous spaces: v’
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Parameters

class neorl.evolu.sa.SA (mode, bounds, fit, cooling='fast', chain_size=10, Tmax=10000, Tmin=1,

chi=0.1, move_func=None, reinforce_best="soft’, Imbda=1.5, alpha=1.5,
threshold=10, ncores=1, seed=None)

Parallel Simulated Annealing

Parameters

mode — (str) problem type, either min for minimization problem or max for maximization

bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'xl"': ['int"', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

f£it — (function) the fitness function

cooling — (str) cooling schedule, choose fast, boltzmann, cauchy, equilibrium™.
The equilibrium mode is only valid with ncores > 1 (See Notes below)

chain_size - (int) number of individuals to evaluate in the chain every generation (e.g.
like npop for other algorithms)

Tmax — (int) initial/maximum temperature
Tmin - (int) final/minimum temperature

chi — (float or list of floats) probability of perturbing every attribute of the input x, ONLY
used if move_func=None. For ncores > 1, if a scalar is provided, constant value is
used across all ncores. If alist of size ncores is provided, each core/chain uses different
value of chi (See Notes below)

move_ func — (function) custom self-defined function that controls how to perturb the input
space during annealing (See Notes below)

reinforce_best — (str) an option to control the starting individual of the chain at every
generation. Choose None, hard, soft (See Notes below).

1mbda — (float) ONLY used if cooling = equilibrium, control the cooling rate, and
the speed at which the algorithm converges.

alpha — (float) ONLY used if cooling = equilibrium, control the initial tempera-
ture of the cooling schedule.

threshold - (float) ONLY used if cooling = equilibrium. The threshold (in %)
for the acceptance rate of solution under which the algorithm stops running.

ncores — (int) number of parallel processors (ncores > 1 isrequired for cooling =
equilibrium)

seed — (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the SA algorithm for number of generations.

Parameters

* ngen — (int) number of generations to evolute

* x0 — (list of lists) initial samples to start the evolution (len (x0) must be equal to
ncores)

* verbose — (int) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)
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Example

from neorl import SA
import matplotlib.pyplot as plt
import random

#Define the fitness function

def FIT (individual) :
"""Sphere test objective function.
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'"+str(i)]=["'float', -100, 100]

#define a custom moving function
def my_move (x, *xkwargs):

X_Nnew=x.copy ()
indices=random.sample (range (0, len(x)), 2)
for i in indices:
x_new[i] = random.uniform (BOUNDS['x1'][1],BOUNDS['x1"'"][2])

return Xx_new

#setup and evolute a serial SA
sa=SA (mode="min', bounds=BOUNDS, fit=FIT, chain_size=50, chi=0.2, Tmax=10000,
move_func=my_move, reinforce_best='soft', cooling='boltzmann', ncores=1, seed=1)

#setup and evolute parallel SA with ‘equilibrium’ cooling

#sa=SA (mode="min', bounds=BOUNDS, fit=FIT, chain_size=20, chi=0.2, Tmax=10000,
—~threshold = 1, Imbda=0.05,

# move_func=my_move, reinforce best='soft', cooling='equilibrium', ncores=8,_,
—seed=1)

x_best, y_best, sa_hist=sa.evolute(ngen=100, verbose=1)

#plot different statistics
plt.figure ()

plt.plot(sa_hist['accept'], '-0o', label='Acceptance')
plt.plot(sa_hist['reject'], '-s', label="'Rejection')
plt.plot (sa_hist['improve'], '-7', label='Improvement')

plt.xlabel ('Generation')
plt.ylabel ("Rate (%))
plt.legend()

plt.show ()
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Notes

* Temperature is annealed between Tmax and Tmin if any of the following cooling schedules is used: fast,
cauchy, and bolt zmann.

* A special cooling schedule equilibrium is supported, which is associated with the following arguments:

1. The initial temperature is determined by Ty = Maax (o x STD(Eg), Tmin), where STD(Ey) is the
standard deviation of the finesses of the initial chains. A tolerance is applied to the temperature if the
standard deviation converged to zero.

2. alpha is the parameter above that controls the initial temperature of SA.

3. 1mbda expresses the cooling rate or the speed of the temperature decay. Larger values lead to faster
cooling.

4. The threshold (in %) expresses the acceptance rate threshold under which the SA stops running. For
example, if threshold=10, when the mean of acceptance rate of all chains falls below 10%, SA termi-
nates. For zero threshold, SA will terminate when all chains no longer accept any new solution.

5. The equilibrium cooling option is activated for parallel SA chains only, i.e. when ncores > 1.

e Custom move_func is allowed by following the input/output format in the example above. If None the
default moving function is used, which is controlled by the chi parameter. Therefore, chi is used ONLY if
move_func=None.

e chi controls the probability of perturbing an attribute of the individual. For example, for d=4, ¥ =
[€1, X2, X3, x4], for every z;, a uniform random number U|0, 1] is compared to chi, if U[0, 1] < chi, the
attribute is perturbed. Otherwise, it remains fixed.

» For every generation, a total of chain_size individuals are executed. Therefore, look for an optimal balance
between chain_size and ngen.

* Option reinforce_best allows enforcing a solution from the previous generation to use as a chain startup
in the next generation. Three options are available for this argument:

1. None: No solution is enforced. The last chain state is preserved to the next generation.
2. hard: the best individual in the chain is used as the initial starting point.

3. soft: an energy-based sampling approach is utilized to draw an individual from the chain to start the next
generation.

 Total number of cost evaluations for SA is chain_size * (ngen + 1).
* If ncores > 1, parallel SA chains are initialized to accelerate the calculations.

e If ncores > 1 and move_func=None, parallel SA chains can have different chi values, provided as a
list/vector.

Salp Swarm Algorithm (SSA)

A module for the Salp Swarm Algorithm with parallel computing support.

Original paper: Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp
Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software,
114, 163-191.
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What can you use?

* Multi processing: v
* Discrete spaces: v’
 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.ssa.SSA (mode, bounds, fit, nsalps=5, int_transform='nearest_int', ncores=1,

seed=None)
Salp Swarm Algorithm

Parameters
* mode — (str) problem type, either min for minimization problem or max for maximization

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ['int"', 1, 4], 'x2': ['float', 0.1, 0.8]7,
'x3"': ['float', 2.2, 6.2]}

e £it — (function) the fitness function
* nsalps — (int): number of salps in the swarm

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors (must be <= nsalps)
* seed — (int) random seed for sampling

evolute (ngen, xO=None, cl=None, verbose=False)
This function evolutes the SSA algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list of lists) initial position of the salps (must be of same size as nsalps)

e cl — (float/list): a scalar value or a list of values with size ngen for the coefficient that
controls exploration/exploitation. If None, default annealing formula for c1 is used (see
Notes below for more info).

* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)
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Example

from neorl import SSA

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3,...
Range: [-100,100]
Minima: 0
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str(i)]=["'float', -100, 100]

nsalps=20

#setup and evolute SSA
ssa=SSA (mode="min', bounds=BOUNDS, fit=FIT, nsalps=nsalps, ncores=1, seed=1)
x_best, y_best, ssa_hist=ssa.evolute(ngen=100, cl=None, verbose=1)

Notes

¢ SSA mimics the swarming behavior of salps when navigating and foraging in oceans. SSA cares mostly about
the leading salp, where its position is optimized to achieve better food source (i.e. fitness).

* Salp leader is mostly controlled by the coefficient c1, which balances SSA exploration and exploitation. The
default formula for ¢; = 2¢~(49/ "ge")z, where g is the current generation (goes from 1 to ngen), and ngen is
the total number of generations to evolute (ngen). Therefore, c1 is typically annealed from a large value at the
beginning to increase exploration, to a very small value toward the end of evolution to prioritize exploitation.

* The user can also provide a scalar/fixed value for c1 to overwrite the default annealing formula described above.
Also, the user can provide a schedule for c1 generated by another formula in a 1ist form. The size of the
list MUST equal to ngen. For example, for ngen=5, the user can provide c1=[5, 0.5, 0.05, 0.005,
0.00057, where for every generation, the corresponding c1 value is used.

¢ Therefore, if c1=None, the user should notice that ngen value used within the .evolute function has an
impact on the c1 value and hence on SSA overall performance.

* ncores argument evaluates the fitness of all salps in the swarm in parallel. Therefore, set ncores <=
nsalps for most optimal resource allocation.

* Look for an optimal balance between nsalps and ngen, it is recommended to minimize the number of
nsalps to allow for more updates and more generations.

¢ Total number of cost evaluations for SSA is nsalps * (ngen + 1).
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Whale Optimization Algorithm (WOA)

A module for the Whale Optimization Algorithm with parallel computing support.

Original paper: Mirjalili, S., Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software,
95, 51-67.

What can you use?

* Multi processing: v
* Discrete spaces: v’
 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.woa.WOA (mode, bounds, fit, nwhales=5, a0=2, b=1, int_transform='nearest_int',

ncores=1, seed=None)
Whale Optimization Algorithm

Parameters
* mode — (str) problem type, either min for minimization problem or max for maximization

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'xl"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.87,
'x3': ['float', 2.2, 6.2]}

» fit — (function) the fitness function

* nwhales - (int): number of whales in the population
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¢ a0 - (float): initial value for coefficient a, which is annealed from a0 to O (see Notes below
for more info).

* b — (float): constant for defining the shape of the logarithmic spiral

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors (must be <= nwhales)
* seed - (int) random seed for sampling

evolute (ngen, x0=None, verbose=False, **kwargs)
This function evolutes the WOA algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list of lists) initial position of the whales (must be of same size as nwhales)
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import WOA
import matplotlib.pyplot as plt

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: 0
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str(i)]=["'float', -100, 100]

nwhales=20

#setup and evolute WOA

woa=WOA (mode="min', bounds=BOUNDS, fit=FIT, nwhales=nwhales, a0=1.5, b=1, ncores=1,
—seed=1)

x_best, y_best, woa_hist=woa.evolute (ngen=100, verbose=1)

plt.figure()

plt.plot (woa_hist['a'], label='a')
plt.plot (woa_hist['A'], label='A")
plt.xlabel ('generation')
plt.ylabel ('coefficient")
plt.legend()

plt.show()
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Notes

WOA mimics the social behavior of humpback whales, which is inspired by the bubble-net hunting strategy.

The whale leader is controlled by multiple coefficients, where a is considered the most important. The coeffi-
cient a balances WOA exploration and exploitation. The value of a is annealed “linearly” from a0 > 0 to 0
over the course of ngen. Typical values for a0 are 1, 1.5, 2, and 4.

Therefore, the user should notice that ngen value used within the . evolute function has an impact on the a
value and hence on WOA overall performance.

ncores argument evaluates the fitness of all whales in the population in parallel. Therefore, set ncores <=
nwhales for most optimal resource allocation.

Look for an optimal balance between nwhales and ngen, it is recommended to minimize the number of
nwhales to allow for more updates and more generations.

Total number of cost evaluations for WOA is nwhales * (ngen + 1).

Moth-flame Optimization (MFO)

A module for the Moth-flame Optimization with parallel computing support.

Original paper: Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm.
Knowledge-based systems, 89, 228-249.

What can you use?

Multi processing: v/
Discrete spaces: v/
Continuous spaces: v/

Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.mfo.MFO (mode, bounds, fit, nmoths=50, b=1, int_transform='nearest_int',

ncores=1, seed=None)
Moth-flame Optimization (MFO)

Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds — (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ["int', 1, 4], 'x2': ["float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}
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e £it — (function) the fitness function
* nmoths — (int) number of moths in the population
* b — (float) constant for defining the shape of the logarithmic spiral

* int_transform - (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

ncores — (int) number of parallel processors
* seed - (int) random seed for sampling

evolute (ngen, xO=None, verbose=False, **kwargs)
This function evolutes the MFO algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list of lists) the initial individuals of the population
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and a list of fitness history)

Example

from neorl import MFO

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: 0
mmwn
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS|['x'+str(i)]=["float', -100, 100]

#setup and evolute MFO
mfo=MFO (mode="min', bounds=BOUNDS, fit=FIT, nmoths=50, ncores=1, seed=1)
x_best, y_best, mfo_hist=mfo.evolute (ngen=200, verbose=1)
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Notes

¢ MFO mimics the navigation behavior of moths in nature. Moths fly in night by maintaining a fixed angle with
respect to the moon to travel in a straight line for long distances. However, the moths may get trapped in a
deadly spiral path around artificial lights (i.e. called flames). This algorithm models this behavior to perform

optimization by escaping the local/deadly regions during search.

* MFO creates two equal arrays of moth and flame positions. The moths are actual search agents that move around
the search space, whereas flames are the best position of moths that obtains so far. Therefore, the flame can be

seen as checkpoint of the best solutions found by the moths during the search.

* A logarithmic spiral is used as the main update mechanism of moths, which is controlled by the parameter b.

* MFO emphasizes exploitation through annealing an internal parameter r between -1 and -2. The value of r

plays a factor in convergence as the moths prioritize their best solutions as we approach the value of ngen.

* ncores argument evaluates the fitness of all moths in parallel. Therefore, set ncores <= nmoths for most

optimal resource allocation.

* Look for an optimal balance between nmoths and ngen, it is recommended to minimize the number of

nmoths to allow for more updates and more generations.

¢ Total number of cost evaluations for MFO is nmoths * ngen.

JAYA Algorithm

A module for the JAYA Algorithm with parallel computing support.

Original paper: Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and uncon-

strained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.

What can you use?

 Multi processing: v’
* Discrete spaces: v’
* Continuous spaces: v’

» Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu. jaya.JAYA (mode, bounds, fit, npop=>50, int_transform="'nearest_int', ncores=1,

seed=None)
JAYA algorithm

Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ["int', 1, 4], 'x2': ['"float', 0.1, 0.8],
'x3"': ['"float', 2.2, 6.2]}

e £it — (function) the fitness function

* npop — (int) number of individuals in the population
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* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors
* seed - (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the MFO algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list of lists) the initial individuals of the population
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and a list of fitness history)

Example

from neorl import JAYA

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: 0
mmn
y=sum (x+x*2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5
BOUNDS={}
for i in range(l,nx+1):
BOUNDS [ 'x'+str(i)]=["float', -100, 100]

#setup and evolute JAYA
jaya=JAYA (mode="'min', bounds=BOUNDS, fit=FIT, npop=60, ncores=1, seed=1l)
x_best, y_best, jaya_hist=jaya.evolute (ngen=200, verbose=1)

Notes

* JAYA concept is very simple that any optimization algorithm should look for solutions that move towards the
best solution and should avoid the worst solution. Therefore, JAYA keeps tracking of both the best and worst
solutions and varies the population accordingly.

* JAYA is free of special hyperparameters, therefore, the user only needs to specify the size of the population
npop.

* ncores argument evaluates the fitness of all individuals in the population in parallel. Therefore, set ncores
<= npop for most optimal resource allocation.

* Look for an optimal balance between npop and ngen, it is recommended to minimize the number of npop to
allow for more updates and more generations.
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¢ Total number of cost evaluations for JAYA is npop * (ngen + 1).

Bat Algorithm (BAT)

A module for the bat optimization algorithm with differential operator, Levy flights trajectory, and parallel computing

support.

Original papers:

* Xie, J., Zhou, Y., Chen, H. (2013). A novel bat algorithm based on differential operator and Lévy flights
trajectory. Computational intelligence and neuroscience, 2013.

* Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for
optimization (NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg.

ey e
~

2
(Local best)

B\ (Global optima)

What can you use?

* Multi processing: v

* Discrete spaces: v’

« Continuous spaces: v

» Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.bat.BAT (mode, bounds, fit, nbats=50, fmin=0, fmax=1, A=0.5, r0=0.5,

alpha=1.0, gamma=0.9, levy="'False', int_transform='"nearest_int',
ncores=1, seed=None)

BAT Algorithm

Parameters

mode — (str) problem type, either min for minimization problem or max for maximization

bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Ex-
ample: bounds={"'xl"': ["float', 0.1, 0.8], 'x2': ["float', 2.
2, 6.21}

f£it — (function) the fitness function

nbats — (int): number of bats in the population

fmin — (float): minimum value of the pulse frequency
fmax — (float): maximum value of the pulse frequency
A — (float) initial value of the loudness rate

rO0 — (float) asymptotic value of the pulse rate
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alpha — (float) decay factor of loudness A, i.e. A approaches 0 by the end of evolution if
alpha < 1

gamma — (float) exponential factor of the pulse rate r, i.e. r increases abruptly at the
beginning and then converges to r0 by the end of evolution

levy — (bool): a flag to activate Levy flight steps of the bat to increase bat diversity

int_transform - (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

ncores — (int) number of parallel processors (must be <= nbats)

seed — (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the BAT algorithm for number of generations.

Parameters

* ngen — (int) number of generations to evolute
* x0 — (list of lists) initial position of the bats (must be of same size as nbats)

* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import BAT

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.

mmn

y=sum (x+**2
return y

F(x) = sum_{i=1}"d xi"2
d=1,2,3,...

Range: [-100,100]
Minima: 0

for x in individual)

#Setup the parameter space (d=5)

nx=>5
BOUNDS={}

for i in range(l,nx+1):
BOUNDS [ 'x'+str (i) ]=["'float', -100, 100]

#setup and evolute BAT
bat=BAT (mode="min', bounds=BOUNDS, fit=FIT, nbats=40,

fmin=0,
ncores=
x_best, y_best,

fmax=1, A=1.0, r0=0.7,
1, seed=1)
bat_hist=bat.evolute (ngen=100, verbose=1)
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Notes

BAT mimics the echolocation behavior of bats in nature. The bats emit a very loud and short sound pulse; the
echo that reflects back from the surrounding objects is received by their big ears. This feedback information of
echo is analyzed by the bats, which reveals the direction of the flight pathway. The echo also helps the bats to
distinguish different insects and obstacles to hunt prey, where the search for the prey here is analogous to the
search for global optima.

The bats start with loudness value of 2, and decay it by a factor of alpha. If the user chooses alpha=1, fixed
value of A is used.

Bats fly randomly to search for the prey with frequency varying between fmin and fmax.

The bats emit pulses with emission rate represented by the asymptotic value (r0). The value of emission rate
is updated in generation i according to r; = ro(1 — exp(—-yi)), where gamma is the exponential factor of the
pulse rate. r typically decreases abruptly at the beginning and then converges back to r0 by the end of the
evolution.

We provide a flexible BAT implemetation that can handle continuous (f1loat), discrete (int), and categor-
ical (grid) spaces and their mix. The user can control the type of discrete transformation via the argument
int_transform.

ncores argument evaluates the fitness of all bats in parallel. Therefore, set ncores <= nbats for most
optimal resource allocation.

Look for an optimal balance between nbat s and ngen, it is recommended to minimize the number of nbats
to allow for more updates and more generations.

Total number of cost evaluations for BAT is 3xnbats * (ngen + 1).

Harris Hawks Optimization (HHO)

A module for the Harris Hawks Optimization with parallel computing support and mixed discrete/continuous opti-
mization ability.

Original paper: Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, 1., Mafarja, M., & Chen, H. (2019). Harris hawks
optimization: Algorithm and applications. Future generation computer systems, 97, 849-872.
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What can you use?

* Multi processing: v
* Discrete spaces: v’
 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.hho.HHO (mode, bounds, fit, nhawks, int_transform='nearest_int', ncores=1,

seed=None)
Harris Hawks Optimizer

Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1"': ["int', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

» fit — (function) the fitness function
* nhawks — (int): number of the hawks in the group

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors (must be <= nhawks)
* seed - (int) random seed for sampling

evolute (ngen, xO=None, verbose=False, **kwargs)
This function evolutes the HHO algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list of lists) initial position of the hawks (must be of same size as nhawks)
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import HHO

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: 0

(continues on next page)
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(continued from previous page)

mon

y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str(i)]=["'float', -100, 100]

#setup and evolute HHO
hho=HHO (mode="min', bounds=BOUNDS, fit=FIT, nhawks=20, ncores=1, seed=1)
x_best, y_best, hho_hist=hho.evolute (ngen=200, verbose=1)

Notes

* HHO is inspired by the cooperative behavior and chasing style of Harris’ hawks in nature, which is called
surprise pounce. Several hawks cooperatively pounce a prey from different directions in an attempt to surprise
it. The prey here can be a rabbit, which is a representative of the global optima.

* HHO employs different exploration and exploitation strategies in form of soft and hard besieges as well as rapid
dives before attacking the prey. These strategies are parameter-free, as only nhawks needs to be specified by
the user.

* We provide a flexible HHO implemetation that can handle continuous (float), discrete (int), and cat-
egorical (grid) and their mix. The user can control the type of discrete transformation via the argument
int_transform.

* ncores argument evaluates the fitness of all hawks in the swarm in parallel after the position update. Therefore,
set ncores <= nhawks for most optimal resource allocation.

e Look for an optimal balance between nhawks and ngen, it is recommended to minimize the number of
nhawks to allow for more updates and more generations.

 Total number of cost evaluations for HHO is 2+nhawks * ngen (this is an upper bound estimate as there is
randomness in whether some of the hawks are evaluated or not).

Ant Colony Optimization (ACO)

A module for the Ant Colony Optimization with parallel computing support and continuous optimization ability.

Original paper: Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European journal
of operational research, 185(3), 1155-1173.
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What can you use?

* Multi processing: v
* Discrete spaces:
 Continuous spaces: v

* Mixed Discrete/Continuous spaces:

Parameters

class neorl.evolu.aco.ACO (mode, fit, bounds, nants=40, narchive=10, Q=0.5, Z=1.0, ncores=1,

seed=None)
Ant Colony Optimization

Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1"': ["int', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

» fit — (function) the fitness function

* nants — (int) number of total ants

* narchive — (int) size of archive of best ants (recommended narchive < nants)
e Q — (float) diversification/intensification factor (see Notes below)

* Z — (float) deviation-distance ratio or pheromone evaporation rate, high Z leads to slow
convergence (see Notes below).

* ncores — (int) number of parallel processors
* seed - (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the ACO algorithm for number of generations

Parameters
* ngen — (int) number of generations to evolute
e x0 — (list of lists) the initial individuals of the population
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and list of fitness history)
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Example

from neorl import ACO
import random

#Define the fitness function
def FIT(individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: O
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS|['x'+str(i)]=["'float', -100, 100]

nants=40

x0=[[random.uniform(-100,100) ]*nx for item in range (nants)]

acor = ACO(mode='min', fit=FIT, bounds=BOUNDS, nants=nants, narchive=10,
0=0.5, Z=1, ncores=1, seed=1)

Xx_best, y_best, acor_hist=acor.evolute (ngen=100, x0=x0, wverbose=1)

Notes

¢ ACO is inspired from the cooperative behavior and food search of ants. Several ants cooperatively search for
food in different directions in an attempt to find the global optima (richest food source).

* For ACO, the archive of best ants is narchive, where it must be less than the population size nants.

 The factor Q controls the rate of exploration/exploitation of ACO. When Q is small, the best-ranked solutions are
strongly preferred next (more exploitation), and when Q is large, the probability of all solutions become more
uniform (more exploration).

* The factor Z is the pheromone evaporation rate, which controls search behavior. As Z increases, the search
becomes less biased towards the points of the search space that have been already explored, which are kept in
the archive. In general, the higher the value of Z, the lower the convergence speed of ACO.

* ncores argument evaluates the fitness of all ants in parallel after the position update. Therefore, set ncores
<= nants for most optimal resource allocation.

* Look for an optimal balance between nant s and ngen, it is recommended to minimize the number of nants
to allow for more updates and more generations.

¢ Total number of cost evaluations for ACO is nants * ngen.
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Cuckoo Search (CS)

A module for the Cuckoo Search Algorithm with parallel computing support.

Original paper: Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World congress
on nature & biologically inspired computing (NaBIC) (pp. 210-214). IEEE.

What can you use?

Multi processing: v/

Discrete spaces: v’

Continuous spaces: v

Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.evolu.cs.CS (mode, bounds, fit, ncuckoos=15, pa=0.25, int_transform='nearest_int',

ncores=1, seed=None)

Cuckoo Search Algorithm

Parameters

mode — (str) problem type, either min for minimization problem or max for maximization

bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'xl"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.87,
'x3"': ['float', 2.2, 6.2]}

f£it — (function) the fitness function

ncuckoos — (int) number of cuckoos or nests in the population: one cuckoos per nest.
Default value is 15.

pa — (float) a scalar value for the coefficient that controls exploration/exploitation, i.e. frac-
tion of the cuckoos/nests that will be replaced by the new cuckoos/nests.

int_transform - (str) method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

ncores — (int) number of parallel processors (must be <= ncuckoos)

seed — (int) random seed for sampling

evolute (ngen, xXO=None, verbose=False)
This function evolutes the CS algorithm for number of generations

Parameters

* ngen — (int) number of generations to evolute

* x0 — (list of lists) initial position of the cuckoos (must be of same size as ncuckoos)

2.2,
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* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import CS

#Define the fitness function
def Sphere(individual) :
"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3,...
Range: [-100,100]
Minima: 0
y=sum(x**2 for x in individual)
return y
#Setup the parameter space (d=5)

nx=>5

BOUNDS={ }

for i in range(l,nx+1):
BOUNDS['x'+str (i) ]=["'float', -100, 100]

#setup and evolute CS

cs = CS(mode = 'min', bounds = BOUNDS, fit = Sphere, ncuckoos = 40, pa = 0.25, seed=1)
x_best, y_best, cs_hist=cs.evolute(ngen = 200, verbose=True)
Notes

* CS algorithm is based on the obligate brood parasitic behavior of some cuckoo species in combination with
the Levy flight behavior of some birds and fruit flies. CS assumes each cuckoo lays one egg at a time, and
dump its egg in randomly chosen nest. Also, the best nests with high quality of eggs will carry over to the next
generations.

* pa controls exploration/exploitation of the algorithm, it is the fraction of the cuckoos/nests that will be replaced
by new cuckoos/nests. In this case, the host bird can either throw the egg away or abandon the nest, and build a
completely new nest.

* ncores argument evaluates the fitness of all cuckoos in the population in parallel. Therefore, set ncores <=
ncuckoos for most optimal resource allocation.

* Look for an optimal balance between ncuckoos and ngen, it is recommended to minimize the number of
ncuckoos to allow for more updates and more generations.

¢ Total number of cost evaluations for CS is 2xncuckoos * (ngen + 1).
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Tabu Search (TS)

A module for the tabu search with long-term memory for discrete/combinatorial optimization.
Original papers:

* Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1(3), 190-206.

* Glover, F. (1990). Tabu search—part II. ORSA Journal on computing, 2(1), 4-32.

What can you use?

* Multi processing:
* Discrete spaces: v’
* Continuous spaces: v’

» Mixed Discrete/Continuous spaces: v’

Parameters
class neorl.evolu.ts.TS (mode, bounds, fit, tabu_tenure=06, penalization_weight=0.8,
swap_mode="perturb’, ncores=1, seed=None)
Tabu Search Algorithm
Parameters

* mode — (str) problem type, either min for minimization problem or max for maximization

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Ex-
ample: bounds={'x1": ["int', 1, 4], 'x2': ['"int', -10, 101,
'x3"': ["int', -100, 1001}

e f£it — (function) the fitness function

* tabu_tenure — (int): Timestep under which a certain list of solution cannot be accessed
(for diversification). Default value is 6.

e penalization_weight — (float): a scalar value for the coefficient that controls ex-
ploration/exploitation, i.e. importance of the frequency of a certain action performed in the
search. The higher the value, the least likely is an action to be performed again after multiple
attempts.

* swap_mode — (str): either “swap” for swapping two elements of the input or “perturb” to
perturb each input within certain bounds (see Notes below)

* ncores — (int) number of parallel processors (only ncores=1 is supported now)
* seed - (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the TS algorithm for number of generations

Parameters
* ngen — (int) number of generations to evolute
* x0 — (list) initial position of the tabu (vector size must be of same size as 1en (bounds))
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)
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Example

from neorl import TS

#Define the fitness function
def Sphere (individual) :

"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3,...
Range: [-100,100]
Minima: 0

y=sum (x**2 for x in individual)

return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}
for i in range (nx):

BOUNDS['x'"+str(i)]=['int', -100, 100]

#setup and evolute TS
x0=[-25,50,100,-75,-100] #initial guess

ts=TS (mode = "min", bounds = BOUNDS, fit = Sphere, tabu_tenure=60,
penalization_weight = 0.8, swap_mode = "perturb", ncores=1, seed=1)

x_best, y_best, ts_hist=ts.evolute(ngen = 700, x0=x0, verbose=1)

Notes

Tabu search (TS) is a metaheuristic algorithm that can be used for solving combinatorial optimization problems
(problems where an optimal ordering and selection of options is desired). Also, we adapted TS to solve bounded
discrete problems for which the candidate solution needs to be perturbed and bounded.

For swap_mode, choose perturb for problems that have lower/upper bounds at which the individual is
perturbed between them to find optimal solution (e.g. Sphere function). Choose swap for combinatorial prob-
lems where the elements of the individual are swapped (not perturbed) to find the optimal solution (e.g. Travel
Salesman, Job Scheduling).

tabu_tenure refers to the number of timesteps to perform to enable any particular update to happen again
(i.e. swapping of two entries x;, x; or perturbation of an entry ;). For example, if tabu_tenure=6 and x; of a
candidate solution is perturbed, within 6 additional timesteps, z; can be perturbed if and only if the resulting
perturbation yields to a solution better than the current best one.

penalization_weight represents the importance/frequency of a certain action performed in the search.
Large values of penalization_weight reduces the frequency of using the same action again in the search.
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2.2.3 Hybrid and Neuroevolution Algorithms
Feedforward Neuroevolution of Augmenting Topologies (FNEAT)

Neuroevolution of Augmenting Topologies (NEAT) uses evolutionary genetic algorithms to evolve neural architec-
tures, where the best optimized neural network is selected according to certain criteria. For NEORL, NEAT tries to
build a neural network that minimizes or maximizes an objective function by following {action, state, reward} termi-
nology of reinforcement learning. In FNEAT, genetic algorithms evolve Feedforward neural networks for optimization
purposes in a reinforcement learning context.

Original paper: Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2), 99-127.

What can you use?

* Multi processing: v*
* Discrete spaces:
* Continuous spaces: v’

* Mixed Discrete/Continuous spaces:

Parameters

class neorl.hybrid. fneat .FNEAT (mode, fit, bounds, config, ncores=1, seed=None)
Feedforward NeuroEvolution of Augmenting Topologies (FNEAT)

Parameters

* mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

» £it — (function) the fitness function

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

* config — (dict) dictionary of RNEAT hyperparameters, see Notes below for available
hyperparameters to change

* ncores — (int) number of parallel processors
* seed — (int) random seed for sampling

evolute (ngen, x0=None, save_best net=False, checkpoint_itv=None, startpoint=None, ver-

bose=Fulse)
This function evolutes the FNEAT algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
e x0 — (list) initial position of the NEAT (must have same size as the x variable)
* save_best_net — (bool) save the winner neural network to a pickle file

* checkpoint_itv — (int) generation frequency to save checkpoints for restarting pur-
poses (e.g. 1: save every generation, 10: save every 10 generations)
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* startpoint — (str) name/path to the checkpoint file to use to start the search (the check-
point file can be saved by invoking the argument checkpoint_itv)

* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

Train a FNEAT agent to optimize the 5-D sphere function

from neorl import FNEAT
import numpy as np

def Sphere (individual) :

"""Sphere test objective function.
F(x) = sum _{i=1}"d xi"2
d=1,2,3, ...

Range: [-100,100]
Minima: O

return sum(x+*2 for x in individual)

nx=5

1b=-100

ub=100

bounds={}

for i in range(l,nx+1):
bounds|['x'+str(i)]=["float', -100, 100]

# modify your own NEAT config
config = {
'pop_size': 50,
'num_hidden': 1,
'activation_mutate_rate': 0.1,
'survival_threshold': 0.3,

}

fneat=FNEAT (fit=Sphere, bounds=bounds, mode='min', config= config, ncores=1, seed=1)
#some random guess (just one individual)

x0 = np.random.uniform(lb,ub, nx)

x_best, y_best, fneat_hist=fneat.evolute (ngen=5, x0=x0, verbose=True,
checkpoint_itv=None, startpoint=None)

Notes

* The following major hyperparameters can be changed when you define the config dictionary:
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— survival_threshold

— min_species_size

— activation_mutate_rate
— aggregation_mutate_rate
— weight_mutate_rate

— bias_mutate_rate

Hyperparameter Description
— pop_size — The number of individuals in each generation
— num_hidden 30)
— elitism The number of hidden nodes to add to each

— The probability that mutation will change the

genome in the initial population (1)

The number of individuals to survive from
one generation to the next (1)

The fraction for each species allowed to re-
produce each generation(0.3)

The minimum number of genomes per
species after reproduction (2)

The probability that mutation will replace the
node’s activation function (0.05)

The probability that mutation will replace the
node’s aggregation function (0.05)

The probability that mutation will change the
connection weight by adding a random value
0.5)

bias of a node by adding a random value (0.7)

Acknowledgment

Thanks to our fellows in NEAT-Python, as we have used their NEAT implementation to leverage our optimization

classes.

https://github.com/CodeReclaimers/neat-python

Recurrent Neuroevolution of Augmenting Topologies (RNEAT)

Neuroevolution of Augmenting Topologies (NEAT) uses evolutionary genetic algorithms to evolve neural architec-
tures, where the best optimized neural network is selected according to certain criteria. For NEORL, NEAT tries to
build a neural network that minimizes or maximizes an objective function by following {action, state, reward} termi-
nology of reinforcement learning. In RNEAT, genetic algorithms evolve Recurrent neural networks for optimization

purposes in a reinforcement learning context.

Original paper: Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies.

Evolutionary computation, 10(2), 99-127.

What can you use?

* Multi processing: v
* Discrete spaces:
 Continuous spaces: v

* Mixed Discrete/Continuous spaces:
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Parameters

class neorl.hybrid.rneat.RNEAT (mode, fit, bounds, config, ncores=1, seed=None)
Recurrent NeuroEvolution of Augmenting Topologies (RNEAT)

Parameters

* mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

e f£it — (function) the fitness function

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ["int', 1, 4], 'x2': ['"float', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

* config — (dict) dictionary of RNEAT hyperparameters, see Notes below for available
hyperparameters to change

* ncores — (int) number of parallel processors

* seed — (int) random seed for sampling

evolute (ngen, x0=None, save_best net=False, checkpoint_itv=None, startpoint=None, ver-

bose=False)
This function evolutes the RNEAT algorithm for number of generations.

Parameters

ngen — (int) number of generations to evolute
x0 — (list) initial position of the NEAT (must have same size as the x variable)
save_best_net — (bool) save the winner neural network to a pickle file

checkpoint_itv — (int) generation frequency to save checkpoints for restarting pur-
poses (e.g. 1: save every generation, 10: save every 10 generations)

startpoint — (str) name/path to the checkpoint file to use to start the search (the check-
point file can be saved by invoking the argument checkpoint_itv)

verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

Train a RNEAT agent to optimize the 5-D sphere function

from neorl import RNEAT
import numpy as np

def Sphere (individual) :
"""Sphere test objective function.

F(x)

= sum _{i=1}"d xi"2

d=1,2,3, ...
Range: [-100,100]
Minima: 0

mmn

return sum(x+*2 for x in individual)

(continues on next page)
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nx=>5

1b=-100

ub=100

bounds={}

for i in range(l,nx+1):
bounds['x'"+str(i)]=['float', -100, 100]

# modify your own NEAT config
config = {
'pop_size': 50,
'num_hidden': 1,
'activation_mutate_rate': 0.1,
'survival_threshold': 0.3,

}

# model config
rneat=RNEAT (fit=Sphere, bounds=bounds, mode='min', config= config, ncores=1, seed=1)
#A random initial qguess (provide one individual)
x0 = np.random.uniform(lb,ub, nx)
x_best, y_best, rneat_hist=rneat.evolute (ngen=200, x0=x0,
verbose=True, checkpoint_itv=None,
startpoint=None)

Notes

* The following major hyperparameters can be changed when you define the config dictionary:

Hyperparameter Description
— pop_size — The number of individuals in each generation
— num_hidden 30)
— elitism — The number of hidden nodes to add to each
— survival_threshold genome in the initial population (1)
— min_species_size — The number of individuals to survive from
— activation_mutate_rate one generation to the next (1)
— aggregation_mutate_rate — The fraction for each species allowed to re-
— weight_mutate_rate produce each generation(0.3)
— bias_mutate_rate — The minimum number of genomes per

species after reproduction (2)

— The probability that mutation will replace the
node’s activation function (0.05)

— The probability that mutation will replace the
node’s aggregation function (0.05)

— The probability that mutation will change the
connection weight by adding a random value
(0.5)

— The probability that mutation will change the
bias of a node by adding a random value (0.7)
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Acknowledgment

Thanks to our fellows in NEAT-Python, as we have used their NEAT implementation to leverage our optimization
classes.

https://github.com/CodeReclaimers/neat-python

Prioritized replay Evolutionary and Swarm Algorithm (PESA)

A module for the parallel hybrid PESA algorithm with prioritized experience replay from reinforcement learning. This

is the classical PESA that hybridizes PSO, ES, and SA modules within NEORL.

Original paper: Radaideh, M. 1., & Shirvan, K. (2022). PESA: Prioritized experience replay for parallel hybrid

evolutionary and swarm algorithms-Application to nuclear fuel. Nuclear Engineering and Technology.

https://doi.org/10.1016/j.net.2022.05.001

What can you use?

Parameters

Multi processing: v/
Discrete spaces: v’
Continuous spaces: v

Mixed Discrete/Continuous spaces: v’

class neorl.hybrid.pesa.PESA (mode, bounds, fit, npop, mu=None, memory_size=None,

alpha_init=0.1, alpha_end=1, alpha_backdoor=0.1,
Tmax=10000, chi=0.1, cxpb=0.7, mutpb=0.1, c1=2.05, c2=2.05,
speed_mech="constric', ncores=1, seed=None)

PESA Major Parameters
Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-

tion

bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={"'xl"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.81,
'x3': ['float', 2.2, 6.2]}

f£it — (function) the fitness function

npop — (int) total number of individuals in each group. So for ES, PSO, and SA, full
population is npop* 3.

mu — (int) number of individuals to survive to the next generation. Also, mu equals to the
number of individuals to sample from the memory. If None, mu=int (npop/2). So 1/2 of
PESA population comes from previous generation, and 1/2 comes from the replay memory
(See Notes below for more info)

memory_size — (int) max size of the replay memory (if None, memory_size is built to
accommodate all samples during search)

alpha_init — (float) initial value of the prioritized replay coefficient (See Notes below)
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* alpha_end — (float) final value of the prioritized replay coefficient (See Notes below)

* alpha_backdoor — (float) backdoor greedy replay rate/probability to sample from the
memory for SA instead of random-walk (See Notes below)

PESA Auxiliary Parameters (for the internal algorithms)
Parameters
* cxpb — (float) for ES, population crossover probability between [0,1]
* mutpb — (float) for ES, population mutation probability between [0,1]
* cl — (float) for PSO, cognitive speed constant
* c2 — (float) for PSO, social speed constant

* speed_mech — (str) for PSO, type of speed mechanism for to update particle velocity,
choose between constric, timew, globw.

* Tmax — (float) for SA, initial/max temperature to start the annealing process

* chi — (float) for SA, probability to perturb an attribute during SA annealing (occurs when
rand(0,1) < chi).

PESA Misc. Parameters
Parameters
* ncores — (int) number of parallel processors
* seed - (int) random seed for sampling

evolute (ngen, xO=None, warmup=100, verbose=0)
This function evolutes the PESA algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute

* x0 — (list of lists) initial samples to start the replay memory (1len (x0) must be equal or
more than npop)

* warmup — (int) number of random warmup samples to initialize the replay memory and
must be equal or more than npop (only used if x0=None)

* verbose — (int) print statistics to screen, 0: no print, 1: PESA print, 2: detailed print

Returns (tuple) (best individual, best fitness, and a list of fitness history)

Example

from neorl import PESA

#Define the fitness function
def FIT (individual) :

"""Sphere test objective function.
F(x) = sum _{i=1}"d xi"2
d=1,2,3, ...

Range: [-100,100]
Minima: 0

y=sum (x*+2 for x in individual)

(continues on next page)
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return y

-

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'"+str (i) ]=["float', —-100, 100]

npop=60

pesa=PESA (mode="'min', bounds=BOUNDS, fit=FIT, npop=npop, mu=40, alpha_init=0.2,
alpha_end=1.0, alpha_backdoor=0.1, ncores=1)

x0=[[50,50,50,50,50] for i in range (npop) ] #initial gquess
X_best, y_best, pesa_hist=pesa.evolute (ngen=50, x0=x0, verbose=1)
Notes

* PESA is symmetric, meaning population size is equal between PSO, ES, and SA, which is helpful to ensure that
all algorithms can update the memory with similar computing time. For example, if the user sets npop=60,
then in every generation, the swarm of PSO has 60 particles, ES population has 60 individuals, and SA chain
has length of 60.

* mu defines the number of individuals from npop to survive to the next generation, and also the number of
samples to replay from the memory. This is applicable to PSO and ES alone as SA does not have the concept of
population. For example, by setting mu=40 and npop=60, then after every generation, the top 40 individuals
in PSO and ES survive. Then the replay memory feeds 40 individuals to ES, which form the new pool of 80
individuals that go through offspring processes that produce again npop=60. For PSO, the replay memory
provides 60-40=20 particles to form a new swarm of npop=60.

* For complex problems and limited memory, we recommend to set memory_size ~ 5000. When the mem-
ory gets full, old samples are overwritten by new ones. Allowing a large memory for complex problems
may slow down PESA as handling large memories is more computationally exhaustive. If memory_size
= None, the memory size will be set to maximum value of ngenxnpop~3.

* For parallel computing of PESA, pick ncores divisible by 3 (e.g. 6, 18, 30) to ensure equal computing power
across the internal algorithms.

e If ncores=1, serial calculation of PESA is executed.

» Example on how to assign computing resources for PESA. Lets assume a generation of npop=60 individuals
and ncores=30. Then, icores=int (ncores/3) or icores=10 cores are assigned to each algorithm
of PSO, ES, and SA. In this case, the ES population has size npop=60 and it is evaluated in parallel with 10
cores. PSO swarm also has npop=60 particles evaluated with 10 cores. SA releases 10 parallel chains, each
chain evaluates 6 individuals.

¢ Check the sections of PSO, ES, and SA for notes on the internal algorithms and the auxiliary parameters of
PESA.

* Start the prioritized replay with a small fraction for alpha_init < 0.1 to increase randomness earlier to
improve PESA exploration. Choose a high fraction for alpha_end > 0.9 to increase exploitation by the
end of evolution.

e The rate of alpha_backdoor replaces the regular random-walk sample of SA with the best individual in the
replay memory to keep SA chain up-to-date. For example, alpha_backdoor=0.1 implies that out of 10
individuals in the SA chain, 1 comes from the memory and the other 9 come from classical random-walk. Keep
the value of alpha_backdoor small enough, e.g. alpha_backdoor < 0.2, toavoid SA divergence.
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* Look for an optimal balance between npop and ngen, it is recommended to minimize population size to allow
for more generations.

* Total number of cost evaluations for PESA is ngen*npop*3 + warmup.

Modern PESA (PESA2)
A module for the parallel hybrid PESA2 algorithm with prioritized experience replay from reinforcement learning.
Modern PESA2 combines GWO, WOA, and DE modules in NEORL.

Original paper: Radaideh, M. 1., & Shirvan, K. (2022). PESA: Prioritized experience replay for parallel hybrid
evolutionary and swarm algorithms-Application to nuclear fuel. Nuclear Engineering and Technology.

https://doi.org/10.1016/j.net.2022.05.001

What can you use?

 Multi processing: v’
* Discrete spaces: v’
* Continuous spaces: v’

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.hybrid.pesa2.PESA2 (mode, bounds, fit, R_frac=0.5, memory_size=None, al-
pha_init=0.1, alpha_end=1, nwolves=5, npop=50, CR=0.7,
F=0.5, nwhales=10, int_transform="'nearest_int', ncores=1,

seed=None)
Prioritized replay for Evolutionary Swarm Algorithms: PESA 2 (Modern Version) A hybrid algorithm of GWO,
DE, and WOA
PESA2 Major Parameters
Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ["int', 1, 4], 'x2': ["float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]1}

e £it — (function) the fitness function

* R_frac — (int) fraction of npop, nwolves, nwhales to survive to the next generation.
Also, R_frac equals to the number of individuals to replay from the memory

* memory_size — (int) max size of the replay memory (if None, memory_size is built to
accommodate all samples during search)

* alpha_init — (float) initial value of the prioritized replay coefficient (See Notes below)
* alpha_end — (float) final value of the prioritized replay coefficient (See Notes below)
PESA?2 Auxiliary Parameters (for the internal algorithms)

Parameters
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* npop — (int) for DE, total number of individuals in DE population
* CR — (float) for DE, crossover probability between [0,1]
* F — (float) for DE, differential/mutation weight between [0,2]
¢ nwolves — (float) for GWO, number of wolves for GWO
* nwhales — (float) for WOA, number of whales in the population of WOA
PESA2 Misc. Parameters
Parameters

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors
* seed — (int) random seed for sampling

evolute (ngen, xO=None, replay_every=1, warmup=100, verbose=0)
This function evolutes the PESA?2 algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute

* x0 — (list of lists) initial samples to start the replay memory (1len (x0) must be equal or
more than npop)

* replay_ every — (int) perform memory replay every number of generations, default:
replay after every generation

* warmup - (int) number of random warmup samples to initialize the replay memory and
must be equal or more than npop (only used if x0=None)

* verbose — (int) print statistics to screen, O: no print, 1: PESA print, 2: detailed print

Returns (tuple) (best individual, best fitness, and a list of fitness history)

Example

from neorl import PESA2

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
da=1,2,3,...
Range: [-100,100]
Minima: 0
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5
BOUNDS={}
for i in range(l,nx+1):

BOUNDS [ 'x'+str(i)]=["'float', -100, 100]

(continues on next page)
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pesa2=PESA2 (mode="'min', bounds=BOUNDS, fit=FIT, npop=50, nwolves=5, nwhales=5, |,
—ncores=1)
x_best, y_best, pesa2_hist=pesa2.evolute(ngen=50, replay_every=2, verbose=2)

Notes

* PESA2 is symmetric, meaning population size is equal between DE, WOA, and GWO, which is helpful to
ensure that all algorithms can update the memory with similar computing time. Since GWO/WOA have typically
smaller population than DE, i.e. nwolves < npop,nwhales < npop, PESA2 adjusts number of internal
generations for GWO/WOA to ensure similar fitness calculations per individual algorithm.

 For example, if the user sets npop=60 for DE, nwovles=6 for GWO, and nwhales=10 for WOA, then
GWO and WOA are executed internally for 10 and 6 generations, respectively, to have a total of 60 evaluations
per individual algorithm.

e R_frac defines the fraction of individuals from npop, nwovles, and nwhales to survive to the next gener-
ation, and also the number of samples to replay from the memory. For example, if the user sets R_frac=0.5,
npop=60 for DE, nwovles=6 for GWO, and nwhales=10 for WOA, then after every generation, the top
30 individuals in DE, the best 3 wolves, and the best 5 whales survive to the next generation. Then the replay
memory feeds 30 individuals to DE, three new wolves to GWO, and 5 new whales to WOA.

 For complex problems and limited memory, we recommend to set memory_size ~ 5000. When the mem-
ory gets full, old samples are overwritten by new ones. Allowing a large memory for complex problems may
slow down PESA2 as handling large memories is more computationally exhaustive. If memory_size =
None, the memory size will be set to maximum value of ngen*npop+* 3.

* For parallel computing of PESA2, pick ncores divisible by 3 (e.g. 6, 18, 30) to ensure equal computing power
across the internal algorithms.

e If ncores=1, serial calculation of PESA2 is executed.

* Check the sections of GWO, WOA, and DE for notes on the internal algorithms and the auxiliary parameters of
PESA2.

« Start the prioritized replay with a small fraction for alpha_init < 0.1 to increase randomness earlier to
improve PESA exploration. Choose a high fraction for alpha_end > 0.9 to increase exploitation by the
end of evolution.

» Look for an optimal balance between npop and ngen, it is recommended to minimize population size to allow
for more generations.

¢ Total number of cost evaluations for PESA2 is ngenxnpop*3 + warmup.

RL-informed Evolution Strategies (PPO-ES)

The Proximal Policy Optimization algorithm starts the search to collect some individuals given a fitness function
through a RL environment. In the second step, the best PPO individuals are used to guide evolution strategies (ES),
where RL individuals are randomly introduced into the ES population to enrich their diversity. The user first runs PPO
search followed by ES, the best results of both stages are reported to the user.

Original papers:

* Radaideh, M. 1., & Shirvan, K. (2021). Rule-based reinforcement learning methodology to inform evolutionary
algorithms for constrained optimization of engineering applications. Knowledge-Based Systems, 217, 106836.

* Radaideh, M. I, Forget, B., & Shirvan, K. (2021). Large-scale design optimisation of boiling water reactor
bundles with neuroevolution. Annals of Nuclear Energy, 160, 108355.
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What can you use?

* Multi processing: v
* Discrete spaces: v’
 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.hybrid.ppoes.PPOES (mode, fit, env, bounds, npop=60, npop_rl=6, init_pop_rl=True,

hyperparam={}, seed=None)
A PPO-informed ES Neuroevolution module

Parameters
* mode — (str) problem type, either min for minimization problem or max for maximization
e f£it — (function) the fitness function to be used with ES

* env — (NEORL environment or Gym environment) The environment to learn with PPO,
either use NEORL method CreateEnvironment (see below) or construct your custom
Gym environment.

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ['int"', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3"': ['float', 2.2, 6.2]}

* npop — (int): population size of ES

* npop_rl — (int): number of RL/PPO individuals to use in ES population (npop_rl <
npop)

* init_pop_rl - (bool) flag to initialize ES population with PPO individuals

* hyperparam — (dict) dictionary of ES hyperparameters (cxpb, cxmode, mutpb,
alpha, mu, smin, smax) and PPO hyperparameters (n_steps, gamma,
learning_rate, ent_coef, vf_coef, lam, cliprange, max_grad_norm,
nminibatches, noptephocs)

* seed — (int) random seed for sampling

evolute (ngen, ncores=1, verbose=False)
This function evolutes the ES algorithm for number of generations with guidance from RL individuals.

Parameters
* ngen — (int) number of generations to evolute
* ncores — (int) number of parallel processors to use with ES
* verbose — (bool) print statistics to screen
Returns (tuple) (best individual, best fitness, and a list of fitness history)

learn (total_timesteps, rl_filter=100, verbose=False)
This function starts the learning of PPO algorithm for number of timesteps to create individuals for evolu-
tionary search

Parameters

* total_timesteps — (int) number of timesteps to run

86 Chapter 2. User Guide



NEORL Documentation, Release 1.8.1b

e rl_filter — (int) number of top individuals to keep from the full RL search
* verbose — (bool) print statistics to screen
Returns (dataframe) dataframe of individuals/fitness sorted from best to worst

class neorl.rl.make_env.CreateEnvironment (method, fit, bounds, ncores=1, mode='max',
episode_length=50)
A module to construct a fitness environment for certain algorithms that follow reinforcement learning approach

of optimization
Parameters
* method — (str) the supported algorithms, choose either: dan, ppo, acktr, acer, a2c.
e f£it — (function) the fitness function

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'xl"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.87,
'x3': ['float', 2.2, 6.2]}

ncores — (int) number of parallel processors

* mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

* episode_length — (int): number of individuals to evaluate before resetting the environ-
ment to random initial guess.

Example

Train a PPO-ES agent to optimize the 5-D sphere function

from neorl import PPOES
from neorl import CreateEnvironment

def Sphere (individual) :

"""Sphere test objective function.
F(x) = sum _{i=1}"d xi"2
da=1,2,3,...

Range: [-100,100]
Minima: 0

mmwn

y=sum (x**2 for x in individual)

return y

#Setup the parameter space (d=5)

nx=>5
BOUNDS={}
for i in range(l,nx+1):
BOUNDS['x'"+str (i) ]=["float', —-100, 100]
if _ name_ =='__main__': #use this block for parallel PPO!

#create an enviroment class for RL/PPO
env=CreateEnvironment (method='ppo', fit=Sphere, ncores=1,
bounds=BOUNDS, mode='min', episode_length=50)

#change hyperparameters of PPO/ES if you like (defaults should be good to start,

Swith) (continues on next page)
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(continued from previous page)

h={"cxpb': 0.8,
'mutpb': 0.2,
'n_steps': 24,
'lam': 1.0}

#Important: ‘mode’ in CreateEnvironment and "mode’ 1in PPOES must be consistent
#fit is needed to be passed again for ES, must be same as the one used in env
ppoes=PPOES (mode="'min', fit=Sphere,
env=env, npop_rl=4, init_pop_rl=True,
bounds=BOUNDS, hyperparam=h, seed=1)
#first run RL for some timesteps
rl=ppoes.learn(total_timesteps=2000, verbose=True)
#second run ES, which will use RL data for guidance
ppoes_x, ppoes_y, ppoes_hist=ppoes.evolute (ngen=20, ncores=1, verbose=True)
—#ncores for ES

RL-informed Differential Evolution (ACKTR-DE)

The Actor Critic using Kronecker-Factored Trust Region (ACKTR) algorithm starts the search to collect some indi-
viduals given a fitness function through a RL environment. In the second step, the best ACKTR individuals are used
to guide differential evolution (DE), where RL individuals are randomly introduced into the DE population to enrich
their diversity by replacing the worst DE individuals. The user first runs ACKTR search followed by DE, the best
results of both stages are reported to the user.

Original papers:

* Radaideh, M. 1., & Shirvan, K. (2021). Rule-based reinforcement learning methodology to inform evolutionary
algorithms for constrained optimization of engineering applications. Knowledge-Based Systems, 217, 106836.

What can you use?

* Multi processing: v
* Discrete spaces: v’
* Continuous spaces: v’

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.hybrid.ackde.ACKDE (mode, fit, env, bounds, npop=60, npop_rl=6, init_pop_rl=True,

hyperparam={}, seed=None)
A ACKTR-informed DE Neuroevolution module

Parameters
* mode — (str) problem type, either min for minimization problem or max for maximization
e f£it — (function) the fitness function to be used with DE

* env — (NEORL environment or Gym environment) The environment to learn with ACKTR,
either use NEORL method CreateEnvironment (see below) or construct your custom
Gym environment.
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* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1"': ["int', 1, 4], 'x2': ['float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

* npop — (int): population size of DE

* npop_rl — (int): number of RL/ACKTR individuals to use in DE population (npop_r1l
< npop)

* init_pop_rl - (bool) flag to initialize DE population with ACKTR individuals

* hyperparam - (dict) dictionary of DE hyperparameters (F, CR) and ACKTR
hyperparameters (n_steps, gamma, learning_rate, ent_coef, vf_coef,
vf_fisher_coef, kfac_clip,max_grad_norm, lr_schedule)

* seed - (int) random seed for sampling

evolute (ngen, ncores=1, verbose=False)
This function evolutes the DE algorithm for number of generations with guidance from RL individuals.

Parameters
* ngen — (int) number of generations to evolute
* ncores — (int) number of parallel processors to use with DE
* verbose — (bool) print statistics to screen
Returns (tuple) (best individual, best fitness, and a list of fitness history)

learn (total_timesteps, rl_filter=100, verbose=False)
This function starts the learning of ACKTR algorithm for number of timesteps to create individuals for
evolutionary search

Parameters
* total_timesteps — (int) number of timesteps to run
e rl filter — (int) number of top individuals to keep from the full RL search
* verbose — (bool) print statistics to screen

Returns (dataframe) dataframe of individuals/fitness sorted from best to worst

class neorl.rl.make_env.CreateEnvironment (method, fit, bounds, ncores=I1, mode='max’,
episode_length=50)
A module to construct a fitness environment for certain algorithms that follow reinforcement learning approach
of optimization

Parameters
* method — (str) the supported algorithms, choose either: dgn, ppo, acktr, acer, a2c.
e £it — (function) the fitness function

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'x1l"': ["int', 1, 4], 'x2': ['"float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]1}

* ncores — (int) number of parallel processors

* mode — (str) problem type, either min for minimization problem or max for maximization
(RL is default to max)

* episode_length - (int): number of individuals to evaluate before resetting the environ-
ment to random initial guess.
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Example

Train a ACKTR-DE agent to optimize the 5-D sphere function

from neorl import ACKDE
from neorl import CreateEnvironment

def Sphere (individual) :

"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
da=1,2,3, ...

Range: [-100,100]
Minima: O
y=sum (x*+2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS|['x'+str(i)]=["'float', -100, 100]

if _ name_ =='__main__': #use this block for parallel ACKTR!
#create an enviroment class for RL/ACKTR
env=CreateEnvironment (method='acktr', fit=Sphere, ncores=1,

bounds=BOUNDS, mode='min', episode_length=50)

#change hyperparameters of ACKTR/DE if you like (defaults should be good to start,
—~with)
h={'F': 0.5,
'CR': 0.3,
'n_steps': 20,
'learning_rate': 0.001}

#Important: "mode’ in CreateEnvironment and ‘mode’ in ACKDE must be consistent
#fit is needed to be passed again for DE, must be same as the one used in env
ackde=ACKDE (mode="'min', fit=Sphere, npop=60,
env=env, npop_rl=6, init_pop_rl=False,
bounds=BOUNDS, hyperparam=h, seed=1)
#first run RL for some timesteps
rl=ackde.learn(total_timesteps=2000, verbose=True)
#second run DE, which will use RL data for guidance
ackde_x, ackde_y, ackde_hist=ackde.evolute (ngen=100, ncores=1, verbose=True)
—#ncores for DE
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Neural Genetic Algorithms (NGA)
A module for the surrogate-based genetic algorithms trained by offline data-driven tri-training approach. The surrogate
model used is radial basis function networks (RBFN).

Original paper: Huang, P, Wang, H., & Jin, Y. (2021). Offline data-driven evolutionary optimization based on tri-
training. Swarm and Evolutionary Computation, 60, 100800.

What can you use?

e Multi processing:
* Discrete spaces:
 Continuous spaces: v

* Mixed Discrete/Continuous spaces:

Parameters

class neorl.hybrid.nga.NGA (mode, bounds, fit, npop, num_warmups=None, hidden_shape=None,

kernel="gaussian', ncores=1, seed=None)
Neural Genetic Algorithm

Parameters

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'xl"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.81,
'x3"': ['float', 2.2, 6.2]}

e f£it — (function) the fitness function
* npop — (int) population size of genetic algorithms

* num_warmups — (int) number of warmup samples to train the surrogate which will be
evaluated by the real fitness £it (if None, num_warmups=20+len (bounds))

* hidden_shape — (int) number of hidden layers in the RBFN network (if None,
hidden_shape=int (sqgrt (int (num_warmups/3))))

* kernel — (str) kernel type for the RBFN network (choose from gaussian, reflect,
mul, inmul)

* ncores — (int) number of parallel processors (currently only ncores=1 is supported)
* seed - (int) random seed for sampling

evolute (ngen, verbose=False)
This function evolutes the NGA algorithm for number of generations.

Parameters
* ngen — (int) number of generations to evolute
* verbose — (bool) print statistics to screen

Returns (tuple) (list of best individuals, list of best fitnesses)
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Example

from neorl import NGA

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum_{i=1}"d xi"2
d=1,2,3,...
Range: [-100,100]
Minima: 0
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str(i)]=["'float', -100, 100]

nga = NGA (mode='min', bounds=BOUNDS, fit=FIT, npop=40, num_warmups=200,
hidden_shape=10, seed=1)
individuals, surrogate_fit = nga.evolute(ngen=100, verbose=False)

#make evaluation of the best individuals using the real fitness function
real_ fit=[FIT (item) for item in individuals]

#print the best individuals/fitness found

min_index=real_fit.index (min(real_fit))

print('-————- Final Summary —————————————————————————— ")
print ('Best real individual:', individuals[min_index])

print ('Best real fitness:', real_ fit[min_index])

Notes

* Tri-training concept uses semi-supervised learning to leverage surrogate models that approximate the real fitness
function to accelerate the optimization process for expensive fitness functions. Three RBFN models are trained,
which are used to determine the best individual from one generation to the next, which is added to retrain the
three surrogate models. The real fitness function £it is ONLY used to evaluate num_warmups. Afterwards,
the three RBFN models are used to guide the genetic algorithm optimizer.

e For num_warmups, choose a reasonable value to accommodate the number of design variables x in your
problem. If None, the default value of warmup samples is 20 times the size of x.

e For hidden_shape, large number of hidden layers can slow down surrogate training, small number can lead
to underfitting. If None, the default value of hidden_shape is mt(\/ int(NUMuyarmups/3))-

* The kernel can play a significant role in surrogate training. Four options are available: Gaussian function
(gaussian), Reflected function (reflect), Multiquadric function (mul), and Inverse multiquadric function
(inmul).

¢ Total number of cost evaluations via the real fitness function £it for NGA is num_warmups.

* Total number of cost evaluations via the surrogate model for NGA is npop * ngen.
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Neural Harris Hawks Optimization (NHHO)

A module for the surrogate-based Harris Hawks Optimization trained by offline data-driven tri-training approach. The
surrogate model used is feedforward neural networks constructed from tensorflow.

Original paper: Huang, P, Wang, H., & Jin, Y. (2021). Offline data-driven evolutionary optimization based on tri-
training. Swarm and Evolutionary Computation, 60, 100800.

What can you use?

* Multi processing: v/

* Discrete spaces: v’

* Continuous spaces: v’

» Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.hybrid.nhho.NHHO (mode, bounds, fit, nhawks, num_warmups=None,

int_transform='"nearest_int', nn_params={}, ncores=1,
seed=None)

Neural Harris Hawks Optimizer

Parameters

mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'xl"': ['int"', 1, 4], 'x2': ['float"', 0.1, 0.81,
'x3': ['float', 2.2, 6.2]}

f£it — (function) the fitness function
nhawks — (int): number of the hawks in the group

num_warmups — (int) number of warmup samples to train the surrogate which will be
evaluated by the real fitness £it (if None, num_warmups=20+len (bounds))

int_transform - (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

nn_params — (dict) parameters for building the surrogate models in dictionary form. Keys
are: test_split, learning_rate, activation, num_nodes, batch_size,
epochs, save_models, verbose, plot. See Notes below for descriptions.

ncores — (int) number of parallel processors to train the three surrogate models (only
ncores=1 or ncores=3 are allowed)

seed — (int) random seed for sampling

evolute (ngen, xO=None, verbose=False)
This function evolutes the NHHO algorithm for number of generations.

Parameters

* ngen — (int) number of generations to evolute

* x0 — (list of lists) initial position of the hawks (must be of same size as nhawks)
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* verbose — (bool) print statistics to screen

Returns (tuple) (list of best individuals, list of best fitnesses)

Example

from neorl import NHHO
import time
import sys

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
da=1,2,3,...
Range: [-100,100]
Minima: O
y=sum (x*+2 for x in individual)
return y

#Setup the parameter space (d=5)

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'"+str(i)]=["float', -100, 100]

nn_params = {}
nn_params|[ 'num_nodes'] = [60, 30, 15]
nn_params|['learning_rate'] = 8e-4
nn_params|['epochs'] = 100
nn_params['plot'] = False #will accelerate training
nn_params [ 'verbose'] = False #will accelerate training
nn_params | 'save_models'] = False #will accelerate training
try:

ngen=int (sys.argv[1l]) #get ngen as external argument for testing
except:

ngen=50 #or use default ngen

tO=time.time ()

nhho = NHHO (mode='min', bounds=BOUNDS, fit=FIT, nhawks=20,
nn_params=nn_params, ncores=3, seed=1)

individuals, fitnesses = nhho.evolute (ngen=ngen, verbose=True)

print ('Comp Time:', time.time()-t0)

#make evaluation of the best individuals using the real fitness function
real_fit=[FIT (item) for item in individuals]

#print the best individuals/fitness found
min_index=real_fit.index (min (real_fit))

print ('-————————— Final Summary —————————————————————————— ")
print ('Best real individual:', individuals[min_index])

print ('Best real fitness:', real_ fit[min_index])
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Notes

e Tri-training concept uses semi-supervised learning to leverage surrogate models that approximate the real fit-
ness function to accelerate the optimization process for expensive fitness functions. Three feedforward neural
network models are trained, which are used to determine the best individual from one generation to the next,
which is added to retrain the three surrogate models. The real fitness function £it is ONLY used to evaluate
num_warmups. Afterwards, the three neural network models are used to guide the Harris hawks optimizer.

e For num_warmups, choose a reasonable value to accommodate the number of design variables x in your
problem. If None, the default value of warmup samples is 20 times the size of x.

¢ Total number of cost evaluations via the real fitness function £it for NHHO is num_warmups.
* Total number of cost evaluations via the surrogate model for NHHO is 2 » nhawks * ngen.

* The following variables can be used in nn_params dictionary to construct the surrogate model

Hyperparameter Description
— num_nodes — List of number of nodes, e.g. [64, 32]
— learning_rate creates two layer-network with 64 and 32
— batch_size nodes (default: [100, 50, 25])
— activation — The learning rate of Adam optimizer (de-
— test_split fault: 6e-4)
— epochs — The minibatch size (default: 32)
— verbose — Activation function type (default: relu)
— save_models — Fraction of test data or test split (default:
- plot 0.2)

— Number of training epochs (default: 20)

— Flag to print different surrogate error to
screen (default: True)

— Flag to save the neural network models
(default: True)

— Flag to generate plots for surrogate train-
ing loss and surrogate prediction accuracy
(default: True)

Animorphic Ensemble Optimization (AEO)

A module for Animorphic Ensemble Optimization. A hybrid island model with different evolutionary populations
evolved in islands.
Original paper: in progress

‘ -« -—P‘,‘Q‘ ((‘
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What can you use?

* Multi processing: v

* Discrete spaces: v/

 Continuous spaces: v

* Mixed Discrete/Continuous spaces: v’

Parameters

class neorl.hybrid.aeo.AEO (bounds, fit, optimizers, gen_per_cycle, mode='min', seed=None,

*rkwargs)

Animorphoc Ensemble Optimizer

Parameters

bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={"'xl"': ['"int"', 1, 4], 'x2': ['float"', 0.1, 0.8]7,
'x3': ['float', 2.2, 6.2]}

f£it — (function) the fitness function
optimizers — (list) list of optimizer instances to be included in the ensemble
gen_per_cycle — (int) number of generations performed in evolution phase per cycle

mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion

seed — (int) random seed for sampling

evolute (Ncyc, npopO=None, xO0=None, popO=None, stop_criteria=None, verbose=False)
This function evolutes the AEO algorithm for a number of cycles. Either (npop0) or (x0 and pop0) are

required.

Parameters

* Necyc — (int) number of cycles to evolute
* pop0 — (list of ints) number of individuals in starting population for each optimizer
* x0 — (list of lists) initial positions of individuals in problem space

* pop0 — (list of ints) population assignments for x0, integer corresponding to assigned
population ordered according to self.optimize

* stop_criteria — (None or callable) function which returns condition if evolution
should continue, can be used to stop evolution at certain number of function evaluations

Returns (tuple) (best individual, best fitness, xarray.Dataset of various algorithm parameters)
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Example

import matplotlib.pyplot as plt
from neorl import AEO

from neorl import DE
from neorl import ES
from neorl import GWO
from neorl import PSO
from neorl import WOA
from neorl import MFO
from neorl import SSA
from neorl import JAYA

#define the fitness function
def FIT (individual) :

"""Sphere test objective function.

F(x) = sum _{i=1}"d x 1"2
d=1,2,3, ...

Range: [-100,100]
Minima: 0

y = sum(xx+2 for x in individual)
return y

#Setup the parameter space (d=5)
nx=>5

BOUNDS={}
for i in range(l,nx+1):
BOUNDS['x'+str (i) ]=['float', -100,

100]

#Define algorithms to be used in enembles
# parameters not directly describing population size

# are carried into the AEO algorithm.

# example of this.

es = ES(mode="'min', fit=FIT, bounds=BOUNDS)
gwo = GWO (mode='min', fit=FIT, bounds=BOUNDS)
woa = WOA (mode='min', fit=FIT, bounds=BOUNDS)
mfo = MFO (mode='min', fit=FIT, bounds=BOUNDS)
ssa = SSA(mode="min', fit=FIT, bounds=BOUNDS)
del = DE(mode='min', fit=FIT, bounds=BOUNDS)
de2 = DE(mode='min', fit=FIT, bounds=BOUNDS,
pso = PSO(mode='min', fit=FIT, bounds=BOUNDS)
jaya=JAYA (mode="min', fit=FIT, bounds=BOUNDS)
ensemble = [es, gwo, woa, mfo, ssa, del, de2,
#initialize an intance of aeo

aeo = AEO (mode='min', fit=FIT, bounds=BOUNDS,

gen_per_cycle=2)

#perform evolution
best_x, best_y, log = aeo.evolute(l5)

print ('Best x')
print (best_x)

See de2 for an

.5, CR=0.5)

jayal

optimizers=ensemble,

(continues on next page)
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(continued from previous page)

print ('Best y')
print (best_y)

plt.figure()
for p in log.coords|['pop']:
plt.plot (log.coords['cycle'], log['nmembers'].sel({'pop' : p}),
label = p.values)
plt.xlabel ("Cycle")
plt.ylabel ("Number of Members")
plt.legend()
plt.show ()
Notes

Only valid in mode="min"'.

AEO supports ES, GWO, WOA, MFO, SSA, DE, PSO and JAYA.

Algorithm objects must be defined prior to their inclusion in AEO (see example)

Parameters such as F in DE or mu in ES are carried into AEO after initialization of these algorithms.

Population size parameters such as nwolves in GWO are used to determine the starting populations but are
changed as the algorithm progresses.

fit, bounds and mode should be consistent across algorithms passed into AEO.

The total number of function evaluation changes depending on the algorithms in the ensemble and the distribu-
tion of members.

Information on the returned log can be found in the code for the AEO class.

Extra options around the migration process can be accessed through the kwargs paramter.

Ensemble of Differential Evolution Variants (EDEV)

A powerful hybrid ensemble of three differential evolution variants: JADE (adaptive differential evolution with op-
tional external archive), CoDE (differential evolution with composite trial vector generation strategies and control
parameters), and EPSDE (differential evolution algorithm with ensemble of parameters and mutation strategies).

Original paper: Wu, G., Shen, X., Li, H., Chen, H., Lin, A., Suganthan, P. N. (2018). Ensemble of differential
evolution variants. Information Sciences, 423, 172-186.

What can you use?

Multi processing: v’
Discrete spaces: v’
Continuous spaces: v/

Mixed Discrete/Continuous spaces: v’
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Parameters

class neorl.hybrid.edev.EDEV (mode, bounds, fit, npop=100, int_transform='nearest_int',

ncores=1, seed=None)
Ensemble of differential evolution variants

Parameters
* mode — (str) problem type, either min for minimization problem or max for maximization

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={"'xl"': ["int', 1, 4], 'x2': ["float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

* fit — (function) the fitness function

* npop — (int): total size of the full population, which will be divided into three sub-
populations

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors (must be <= npop)
* seed — (int) random seed for sampling

evolute (ngen, ng=20, x0=None, verbose=False)
This function evolutes the EDEV algorithm for a number of generations.

Parameters
* ngen — (int) number of generations to evolute

* ng - (int) the period or number of generations to determine the best performing DE variant
and reward subpopulation assignment, ng < ngen (see Notes below for more info).

* x0 — (list of lists) initial position of the individuals (must be of same size as npop)
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import EDEV

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: 0
y=sum (x*+2 for x in individual)
return y

#Setup the parameter space (d=5)
nx=>5

BOUNDS={}

for i in range(l,nx+1):

(continues on next page)
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(continued from previous page)

BOUNDS [ 'x'+str (i) ]=["'float', -100, 100]

#setup and evolute EDEV
edev=EDEV (mode="min', bounds=BOUNDS, fit=FIT, npop=100, ncores=1, seed=1)
x_best, y_best, edev_hist=edev.evolute (ngen=100, ng=10, verbose=1)

Notes

* Choosing the value of npop and lambda_ should be careful for EDEV. The third variant (EPSDE) per-
forms mutation and crossover on 6 different individuals. Therefore, make sure that the second and third
sub-populations have more than 6 individuals for optimal performance, or simply ensure that int (npop =
lambda_) > 6.

* Increasing 1ambda_ value will make the size of the three sub-populations comparable. In the original paper,
one population is bigger than the others, so for lambda_ = 0.1 and npop=100, the three sub-populations
have sizes 80, 10, and 10.

* The parallelization of EDEV is bottlenecked by the size of the sub-populations. For example, for sub-
populations of size 80, 10, and 10, using ncores = 80 will ensure that the first sub-population is executed in
one round, but the other two sub-populations will be evaluated in sequence with 10 cores only.

* Unlike standalone DE, for EDEYV, the values of the hyperparameters F and CR are automatically adapted.

e The parameter ng in the evolute function helps to determine the frequency/period at which the three sub-
populations are swapped between the DE variants based on their prior performance. For example, if ngen =
100 and ng=20, five updates will occur during the full evolution process.

* Look for an optimal balance between npop and ngen, it is recommended to keep population size optimal to
allow for more generations, but also sufficient to keep the three sub-populations active.

* As EDEV is a bit complex, the total number of cost evaluations for EDEV can be accessed via the returned
dictionary key: edev_hist ['F-Evals'] inthe example above.

Ensemble Particle Swarm Optimization (EPSO)

A powerful hybrid ensemble of five particle swarm optimization variants: classical inertia weight particle swarm
optimization (PSO), self-organizing hierarchical particle swarm optimizer withtime-varying acceleration coefficients
(HPSO-TVAC), Fitness-Distance-Ratio based PSO (FDR-PSO), Distance-based locally informed PSO (LIPS), and
Comprehensive Learning PSO (CLPSO).

Original paper: Lynn, N., Suganthan, P. N. (2017). Ensemble particle swarm optimizer. Applied Soft Computing, 55,
533-548.

What can you use?

* Multi processing: v
* Discrete spaces: v’
* Continuous spaces: v’

* Mixed Discrete/Continuous spaces: v’
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Parameters

class neorl.hybrid.epso.EPSO (mode, bounds, fit, gl=15, g2=25, int_transform='nearest_int',

ncores=1, seed=None)
Ensemble Particle Swarm Optimization (EPSO)

Parameters
* mode — (str) problem type, either min for minimization problem or max for maximization

* bounds - (dict) input parameter type and lower/upper bounds in dictionary form. Exam-
ple: bounds={'xl"': ["int', 1, 4], 'x2': ["float', 0.1, 0.8],
'x3': ['float', 2.2, 6.2]}

» fit — (function) the fitness function
* gl — (int): number of particles in the exploration group
* g2 — (int): number of particles in the exploitation group (total swarm size is g1 + g2)

* int_transform — (str): method of handling int/discrete variables, choose from:
nearest_int, sigmoid, minmax.

* ncores — (int) number of parallel processors (must be <= gl+g2)
* seed - (int) random seed for sampling

evolute (ngen, LP=3, x0=None, verbose=False)
This function evolutes the EPSO algorithm for a number of generations.

Parameters
* ngen — (int) number of generations to evolute

* LP — (int) number of generations before updating the success and failure memories for the
ensemble variants (i.e. learning period)

* x0 — (list of lists) initial position of the particles (must be of same size as g1 + g2)
* verbose — (bool) print statistics to screen

Returns (tuple) (best individual, best fitness, and dictionary containing major search results)

Example

from neorl import EPSO

#Define the fitness function
def FIT (individual) :
"""Sphere test objective function.
F(x) = sum {i=1}"d xi"2
d=1,2,3, ...
Range: [-100,100]
Minima: O
y=sum (x**2 for x in individual)
return y

#Setup the parameter space (d=5)
nx=>5
BOUNDS={}

(continues on next page)
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for i in range(l,nx+1):
BOUNDS['x'+str (i) ]=["'float', =100, 100]

#setup and evolute EPSO
epso=EPSO (mode="min', bounds=BOUNDS, gl=15, g2=25, fit=FIT, ncores=1, seed=None)
x_best, y_best, epso_hist=epso.evolute(ngen=100, LP=3, verbose=1)

Notes

* The number of particles in the exploration subgroup (g1) and exploitation subgroup (g2) are needed for EPSO.
In the original algorithm, g1 tends to be smaller than g2.

» For EPSO, in the first 90% of the generations, both exploration and exploitation subgroups are involved, where
gl is controlled by CLPSO and g2 is controlled by all five variants. In the last 10% of the generations, the
search focuses on exploitation only, where both g1 + g2 are controlled by the five variants.

* The value of LP represents the learning period at which the success and fail memories are updated to calculate
the success rate for each PSO variant. The success rate represents the probability for each PSO variant to update
the position and velocity of the next particle in the group. LP=3 means the update will occur every 3 generations.

» Look for an optimal balance between g1, g2, and ngen, it is recommended to minimize particle size to allow
for more generations.

 Total number of cost evaluations for EPSO is (g1 + g2) * (ngen + 1).

2.3 Hyperparameter Tuning

This section highlights the supported methods to tune the hyperparameters of NEORL algorithms.

2.3.1 Grid Search

A module for grid search of hyperparameters of NEORL algorithms.

Original paper: Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2).

Grid Search is an exhaustive search for selecting an optimal set of algorithm hyperparameters. In Grid Search, the
analyst sets up a grid of hyperparameter values. A multi-dimensional full grid of all hyperparameters is constructed,
which contains all possible combinations of hyperparameters. Afterwards, every combination of hyperparameter
values is tested in serial/parallel, where the optimization score (e.g. fitness) is estimated. Grid search can be very
expensive for fine grids as well as large number of hyperparameters to tune.
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What can you use?

* Multi processing: v

¢ Discrete/Continuous/Mixed spaces: v’
* Reinforcement Learning Algorithms: v
¢ Evolutionary Algorithms: v

* Hybrid Neuroevolution Algorithms: v/

Parameters
class neorl.tune.gridtune.GRIDTUNE (param_grid, fit)
A module for grid search for hyperparameter tuning
Parameters

* param_grid — (dict) the grid (list of possible values) for each hyperparameter provided in
adictionary form. Example: {‘x1’: [40, 50, 60, 80, 100], ‘x2’: [0.2, 0.4, 0.8], ‘x3’: [‘blend’,
‘cx2point’]}

» fit — (function) the self-defined fitness function that includes the hyperparameters as input
and algorithm score as output

tune (ncores=1, csvname=None, verbose=True)
This function starts the tuning process with specified number of processors

Parameters

* ncores — (int) number of parallel processors (see the Notes section below for an impor-
tant note about parallel execution)

* csvname — (str) the name of the csv file name to save the tuning results (useful for
expensive cases as the csv file is updated directly after the case is done)

* verbose — (bool) whether to print updates to the screen or not

Example

Example of using grid search to tune three ES hyperparameters for solving the 5-d Sphere function

from neorl.tune import GRIDTUNE
from neorl import ES

#**********************************************************
# Part I: Original Problem Settings

#**********************************************************

#Define the fitness function (for original optimisation)
def sphere (individual) :

y=sum (x**2 for x in individual)

return y

#*************************************************************
# Part II: Define fitness function for hyperparameter tuning
#*************************************************************

def tune_fit (cxpb, mutpb, alpha):

(continues on next page)
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#-—-setup the parameter space

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str(i)]=["'float', -100, 100]

#-—-setup the ES algorithm
es=ES (mode="min', bounds=BOUNDS, fit=sphere, lambda_=80, mu=40, mutpb=mutpb,
—alpha=alpha,
cxmode="'blend', cxpb=cxpb, ncores=1, seed=1)

#-—-Evolute the ES object and obtains y_best
#-—turn off verbose for less algorithm print-out when tuning
x_best, y_best, es_hist=es.evolute (ngen=100, verbose=0)

return y_best #returns the best score

#*************************************************************
# Part III: Tuning
#*************************************************************
param_grid={

#def tune_fit (cxpb, mutpb, alpha):

'cxpb': [0.2, 0.4], #cxpb 1is first

'mutpb': [0.05, 0.1], #mutpb is second

'alpha': [0.1, 0.2, 0.3, 0.4]1} +#alpha is third

#setup a grid tune object

gtune=GRIDTUNE (param_grid=param_grid, fit=tune_fit)
#view the generated cases before running them
print (gtune.hyperparameter_cases)

#tune the parameters with method .tune
gridres=gtune.tune (ncores=1, csvname='tune.csv')
print (gridres)

Notes

e For ncores > 1, the parallel tuning engine starts. Make sure to run your python script from the terminal
NOT from an IDE (e.g. Spyder, Jupyter Notebook). IDEs are not robust when running parallel problems
with packages like joblib ormultiprocessing. Forncores = 1, IDEs seem to work fine.

« If there are large number of hyperparameters to tune (large d), try nested grid search. First, run a grid search on
few parameters first, then fix them to their best, and start another grid search for the next group of hyperparam-
eters, and so on.

¢ Always start with coarse grid for all hyperparameters (small k;) to obtain an impression about their sensitivity.
Then, refine the grids for those hyperparameters with more impact, and execute a more detailed grid search.

Grid search is ideal to use when the analyst has prior experience on the feasible range of each hyperparameter
and the most important hyperparameters to tune.
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2.3.2 Random Search

A module for random search of hyperparameters of NEORL algorithms.

Original paper: Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2).

Random search is a technique where random combinations of the hyperparameters are used to find the best solution
for the algorithm used. Random search tries random combinations of the hyperparameters, where the cost function is
evaluated at these random sets in the parameter space. As indicated by the reference above, the chances of finding the
optimal hyperparameters are comparatively higher in random search than grid search. This is because of the random
search pattern, as the algorithm might end up being used on the optimized hyperparameters without any aliasing or
wasting of resources.

What can you use?

* Multi processing: v

« Discrete/Continuous/Mixed spaces: v’
 Reinforcement Learning Algorithms: v/
¢ Evolutionary Algorithms: v/

* Hybrid Neuroevolution Algorithms: v’

Parameters
class neorl.tune.randtune.RANDTUNE (param_grid, fit, ncases=50, seed=None)
A module for random search for hyperparameter tuning
Parameters

* param_grid — (dict) the type and range of each hyperparameter in a dictionary form
(types are int /discreteor float/continuousorgrid/categorical). Exam-
ple: {x1’: [[40, 50, 60, 100], ‘grid’], ‘x2’: [[0.2, 0.8], ‘float’], ‘x3’: [[‘blend’, ‘cx2point’],
‘grid’], x4’: [[20, 80], ‘int’]}

» fit — (function) the self-defined fitness function that includes the hyperparameters as input
and algorithm score as output

* ncases — (int) number of random hyperparameter cases to generate
* seed — (int) random seed for sampling reproducibility

tune (ncores=1, csvname=None, verbose=True)
This function starts the tuning process with specified number of processors

Parameters

* ncores — (int) number of parallel processors (see the Notes section below for an impor-
tant note about parallel execution)

* csvname — (str) the name of the csv file name to save the tuning results (useful for
expensive cases as the csv file is updated directly after the case is done)

* verbose — (bool) whether to print updates to the screen or not

2.3. Hyperparameter Tuning 105



NEORL Documentation, Release 1.8.1b

Example

Example of using random search to tune three ES hyperparameters for solving the 5-d Sphere function

from neorl.tune import RANDTUNE
from neorl import ES

#**********************************************************
# Part I: Original Problem Settings

#**********************************************************

#Define the fitness function (for original optimisation)
def sphere(individual) :

y=sum(xx+2 for x in individual)

return y

#*************************************************************
# Part II: Define fitness function for hyperparameter tuning
#*************************************************************

def tune_fit (cxpb, mu, alpha, cxmode):

#-—-setup the parameter space

nx=>5

BOUNDS={}

for i in range(l,nx+1):
BOUNDS|['x'"+str(i)]=["float', -100, 100]

#-—-setup the ES algorithm
es=ES (mode="min', bounds=BOUNDS, fit=sphere, lambda_=80, mu=mu, mutpb=0.1,
—alpha=alpha,
cxmode=cxmode, cxpb=cxpb, ncores=1, seed=1)

#-—Evolute the ES object and obtains y_best
#-—turn off verbose for less algorithm print-out when tuning
x_best, y_best, es_hist=es.evolute (ngen=100, verbose=0)

return y_best #returns the best score

#*************************************************************

# Part III: Tuning

#*************************************************************

#Setup the parameter space

#VERY IMPORTANT: The order of these parameters MUST be similar to their order in tune_
—fit

#see tune_fit

param_grid={

#def tune_fit (cxpb, mu, alpha, cxmode):

'cxpb': ['float', 0.1, 0.9], #cxpb is first (low=0.1, high=0.8,_
—type=float/continuous)

'mu’: ['int', 30, 60], #mu is second (low=30, high=60, type=int/
—discrete)

'alpha':['grid', (0.1, 0.2, 0.3, 0.4)1, #alpha is third (grid with fixed values,
—type=grid/categorical)

'cxmode':['grid', ('blend', 'cx2point')]} #cxmode is fourth (grid with fixed values,

—type=grid/categorical)

#setup a random tune object

(continues on next page)
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rtune=RANDTUNE (param_grid=param_grid, fit=tune_fit, ncases=25, seed=1)
#view the generated cases before running them

print (rtune.hyperparameter_cases)

#tune the parameters with method .tune

randres=rtune.tune (ncores=1, csvname='tune.csv')

print (randres)

Notes

e Forncores > 1, the parallel tuning engine starts. Make sure to run your python script from the terminal
NOT from an IDE (e.g. Spyder, Jupyter Notebook). IDEs are not robust when running parallel problems
with packages like joblib ormultiprocessing. For ncores = 1, IDEs seem to work fine.

* Random search struggles with dimensionality if there are large number of hyperparameters to tune. Therefore,
it is always recommended to do a preliminary sensitivity study to exclude or fix the hyperparameters with small
impact.

* To determine an optimal ncases, try to setup your problem for grid search on paper, calculate the grid search
ncases, and go for 50% of this number. Achieving similar performance with 50% cost is a promise for random
search.

* For difficult problems, the analyst can start with a random search first to narrow the choices of the important
hyperparameters. Then, a grid search can be executed on those important parameters with more refined and
narrower grids.

2.3.3 Bayesian Search

A module of Bayesian optimisation search for hyperparameter tuning of NEORL algorithms based upon
scikit-optimise.

Original paper: https://arxiv.org/abs/1012.2599

Bayesian search, in contrast to grid and random searches, keeps track of past evaluation results. Bayesian uses past
evaluations to form a probabilistic model mapping hyperparameters to a probability of a score on the objective function
(e.g. max/min fitness). Bayesian optimization excels when the objective functions are expensive to evaluate, when we
do not have access to derivatives, or when the problem at hand is non-convex.

What can you use?

e Multi processing: v (Multithreading in a single processor)
* Discrete/Continuous/Mixed spaces: v’

* Reinforcement Learning Algorithms: v/

* Evolutionary Algorithms: v’

* Hybrid Neuroevolution Algorithms: v’
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Parameters
class neorl.tune.bayestune.BAYESTUNE (param_grid, fit, mode="min’, ncases=50, seed=None)
A module for Bayesian search for hyperparameter tuning
Parameters

* param_grid — (dict) the type and range of each hyperparameter in a dictionary form
(typesare int /discreteor float/continuousorgrid/categorical). Exam-
ple: {x1’: [[40, 50, 60, 100], ‘grid’], ‘x2’: [[0.2, 0.8], ‘float’], ‘x3’: [[‘blend’, ‘cx2point’],
‘grid’], x4’: [[20, 80], ‘int’]}

» fit — (function) the self-defined fitness function that includes the hyperparameters as input
and algorithm score as output

* mode — (str) problem type, either “min” for minimization problem or “max” for maximiza-
tion. Default: Bayesian tuner is set to minimize an objective

* ncases — (int) number of random hyperparameter cases to generate per core, ncases >=
11 (see Notes for an important remark)

* seed - (int) random seed for sampling reproducibility

tune (ncores=1, csyname=None, verbose=True)
This function starts the tuning process with specified number of processors

Parameters

* nthreads - (int) number of parallel threads (see the Notes section below for an impor-
tant note about parallel execution)

* csvname — (str) the name of the csv file name to save the tuning results (useful for
expensive cases as the csv file is updated directly after the case is done)

» verbose — (bool) whether to print updates to the screen or not

Example

from neorl.tune import BAYESTUNE
from neorl import ES

#**********************************************************

# Part I: Original Problem Settings

#**********************************************************

#Define the fitness function (for original optimisation)
def sphere (individual) :

y=sum (x**2 for x in individual)

return y

#*************************************************************
# Part II: Define fitness function for hyperparameter tuning
#*************************************************************

def tune_fit (cxpb, mu, alpha, cxmode):

#-—setup the parameter space
nx=5

BOUNDS={}

for i in range(l,nx+1):

(continues on next page)
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BOUNDS [ 'x'"+str(i)]=["'float', -100, 100]

#-—-setup the ES algorithm
es=ES (mode="min', bounds=BOUNDS, fit=sphere, lambda_=80, mu=mu, mutpb=0.1,
—alpha=alpha,
cxmode=cxmode, cxpb=cxpb, ncores=1, seed=1)

#-—-Evolute the ES object and obtains y_best
#-—turn off verbose for less algorithm print-out when tuning
x_best, y_best, es_hist=es.evolute (ngen=100, verbose=0)

return y_best #returns the best score

#*************************************************************

# Part III: Tuning

#*************************************************************

#Setup the parameter space

#VERY IMPORTANT: The order of these parameters MUST be similar to their order in tune_
—~fit

#see tune_fit

param_grid={

#def tune_fit (cxpb, mu, alpha, cxmode) :

'cxpb': ['float', 0.1, 0.9], #cxpb is first (low=0.1, high=0.8,_
—type=float/continuous)

'mu': ["int', 30, 607, #mu is second (low=30, high=60, type=int/
—discrete)

'alpha':['grid', [0.1, 0.2, 0.3, 0.411, #alpha is third (grid with fixed values,
—type=grid/categorical)

'cxmode':['grid', ['blend', 'cx2point']]} #cxmode is fourth (grid with fixed values,

—type=grid/categorical)

#setup a bayesian tune object

btune=BAYESTUNE (mode='min', param_grid=param_grid, fit=tune_fit, ncases=30)
#tune the parameters with method .tune

bayesres=btune.tune (ncores=1, csvname='bayestune.csv', verbose=True)

print (bayesres)

btune.plot_results (pngname='bayes_conv')

Notes

* We allow a weak parallelization of Bayesian search via multithreading. The user can start independent Bayesian
search with different seeds by increasing ncores. However, all threads will be executed on a single processor,
which will slow down every Bayesian sequence. Therefore, this option is recommended when each hyperpa-
rameter case is fast-to-evaluate and does not require intensive CPU power.

* If the user sets ncores=4 and sets ncases=15, a total of 60 hyperparameter cases are evaluated, where each
thread uses 25% of the CPU power. The extension to multiprocessing/multi-core capability is on track in
future.

Keep ncases >= 11. Ifncases <11, the optimiser resets ncases=11. Itis good to start with ncases=30,
check the optimizer convergence, and increase as needed.

Relying on grid/categorical variables can accelerate the search by a wide margin. Therefore, if the user
is aware of certain values of the (int /discrete)orthe (float /cont inuous) hyperparameters, it is good
to convert them to grid/categorical.
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2.3.4 Evolutionary Search

A module of evolutionary search for hyperparameter tuning of NEORL algorithms.

Original paper: E. Bochinski, T. Senst and T. Sikora, “Hyper-parameter optimization for convolutional neural network
committees based on evolutionary algorithms,” 2017 IEEE International Conference on Image Processing (ICIP),
Beijing, China, 2017, pp. 3924-3928, doi: 10.1109/ICIP.2017.8297018.

We have used a compact evolution strategies (ES) module for the purpose of tuning the hyperparameters of NEORL
algorithms. See the ES algorithm section for more details about the (u, \) algorithm. ES tuner leverages a population
of individuals, where each individual represents a sample from the hyperparameter space. ES uses recombination,
crossover, and mutation operations to improve the individuals from generation to the other. The best of the best
individuals in all generations are reported as the top hyperparameter sets to use further with the algorithm.

What can you use?

* Multi processing: v

* Discrete/Continuous/Mixed spaces: v/
 Reinforcement Learning Algorithms: v
* Evolutionary Algorithms: v

 Hybrid Neuroevolution Algorithms: v/

Parameters
class neorl.tune.estune.ESTUNE (param_grid, fit, mode="max', ngen=10, seed=None)
A module for Evolutionary search for hyperparameter tuning based on ES algorithm
Parameters

* param_grid — (dict) the type and range of each hyperparameter in a dictionary form
(types are int/discrete or float/continuous or grid/categorical).

» fit — (function) the self-defined fitness function that includes the hyperparameters as input
and algorithm score as output

* mode — (str) problem type, either min for minimization problem or max for maximization.
Default: Evolutionary tuner is set to maximize an objective

* ngen — (int) number of ES generations to run, total number of hyperparameter tests is ngen
x 10 (see Notes for an important remark)

* seed - (int) random seed for sampling reproducibility

tune (ncores=1, csvname=None, verbose=True)
This function starts the tuning process with specified number of processors

Parameters

* ncores — (int) number of parallel processors.
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* csvname — (str) the name of the csv file name to save the tuning results (useful for
expensive cases as the csv file is updated directly after the case is done)

* verbose — (bool) whether to print updates to the screen or not

Example

from neorl.tune import ESTUNE
from neorl import PSO

#**********************************************************

# Part I: Original Problem Settings

#**********************************************************

#Define the fitness function (for original optimisation)
def sphere (individual) :

y=sum (x*+2 for x in individual)

return y

#*************************************************************
# Part II: Define fitness function for hyperparameter tuning
#*************************************************************

def tune_fit (x):

npar=x[0]

cl=x[1]

c2=x[2]

if x[3] == 1:
speed_mech="constric'

elif x[3] ==
speed_mech="timew'

elif x[3] == 3:
speed_mech="globw'

#-—setup the parameter space
nx=>5
BOUNDS={}
for i in range(l,nx+1):
BOUNDS [ 'x'"+str(i)]=["'float', -100, 100]

#-—-setup the PSO algorithm
pso=PSO (mode="min', bounds=BOUNDS, fit=sphere, npar=npar, cl=cl, c2=c2,
speed_mech=speed_mech, ncores=1, seed=1)

#-—Evolute the PSO object and obtains y_best
#-—turn off verbose for less algorithm print-out when tuning
x_best, y_best, pso_hist=pso.evolute (ngen=30, verbose=0)

return y_best #returns the best score

#*************************************************************

# Part III: Tuning

#*************************************************************

#Setup the parameter space

#VERY IMPORTANT: The order of these parameters MUST be similar to their order in tune_
—fit

#see tune fit

(continues on next page)
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param_grid={
#def tune_fit (npar, cl, c2, speed_mech):

'npar': ['int', 40, 60], #npar is first (low=30, high=60, type=int/discrete)
'cl': ['float', 2.05, 2.15], #cl is second (low=2.05, high=2.15, type=float/
—continuous)

'c2': ['float', 2.05, 2.157, #c2 1is third (low=2.05, high=2.15, type=float/
—continuous)

'speed_mech': ['int', 1, 31} #speed_mech is fourth (categorial variable encoded as,,

—integer, see tune_fit)

#setup a evolutionary tune object

etune=ESTUNE (mode='min', param_grid=param_grid, fit=tune_fit, ngen=10) #total cases_
—1s ngen * 10

#tune the parameters with method .tune

evolures=etune.tune (ncores=1, csvname='evolutune.csv', verbose=True)

evolures = evolures.sort_values(['score'], axis='index', ascending=True) #rank the_
—scores from min to max

print (evolures)

etune.plot_results (pngname='evolu_conv')

Notes

 Evolutionary search uses fixed values for 1ambda_=10 and mu=10.
 Therefore, the total cost of evolutionary search or the total number of hyperparameter tests is ngen * 10.

» For categorical variables, use integers to encode them as integer variables. Then, inside the tune_ fit function,
the integers are converted back to the real categorical value. See how speed_mech is handled in the example
above.

* The strategy and individual vectors in the ES tuner are updated similarly to the ES algorithm module described
here.

* For difficult problems, the analyst can start with a random search first to narrow the choices of the important
hyperparameters. Then, an evolutionary search can be executed on those important parameters to refine their
values.

2.4 Examples

This section highlights various mathematical and engineering examples of NEORL.

2.4.1 Example 1: Traveling Salesman Problem

Example of solving the classical discrete optimization problem “Traveling Salesman Problem” (TSP) using NEORL
with state-of-the-art reinforcement learning algorithms to demonstrate compatibility with discrete space.
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Summary

* Algorithm: PPO, A2C, ACKTR, DQN, ACER
¢ Type: Discrete/Combinatorial, Single Objective, Constrained

* Field: Computational Mathematics

Problem Description

The Traveling Salesman Problem (TSP) is a well known problem in the discrete optimization community and find
applications well beyond computational mathematics: genetics, chemistry,telecommunications, and nuclear reactor
optimization. Based on the spatial distribution of cities representing the vertices on a Graph G, the objective is to
minimize the length of a tour 7 defined as a cycle on the graph that visits all vertices (cities) only once and circle back
to the departure state. An example is given in the figure below:

i

Formally, the graph is described by G = (V, A), where V is the collection of N vertices, A = {(i,7) : 4,5 € V'}is
the set of edges with cost ¢ : A— > R, ¢ : (¢,5)— > ¢; j, Where ¢;; is the distance from node i to node j. Lastly, x;;
are boolean variables such that ;; = 1 if the edge (i, j) is active. One formulation of the problem is (known as the
“cutset” formulation):

max —X;3;x5¢; = f(T)

st Yz =1 Vi:(i,j)€ A

Yz =1 Vi:(j,i)e A

Liesjev\s Ti; 22 VSCV,5¢{0,V}

x;; € {0,1}
where S is a proper subset of the vertices V, i.e. it is connected to one of the remaining nodes (translated through
the third constraint) and 7 = {ey, ..., en} is a tour, where Vi, e; € A. The first two constraints indicate that every

city must be visited at least once and be left to another city. The third constraint indicates that each subset of cities is
connected to another subset, which prevents inner cycle to form within the tour.

2.4. Examples 113



NEORL Documentation, Release 1.8.1b

NEORL script

from neorl.benchmarks import TSP

from neorl import PPO2, DOQN, ACER, ACKTR, A2C
from neorl import MlpPolicy, DQNPolicy

from neorl import RLLogger

import matplotlib

matplotlib.use ('Agg')

import matplotlib.pyplot as plt

import pandas as pd

import sys

def TSP_Data(n_city):

momnn

Function provides initial data to construct a TSP enviroment

:param n_city: (int) number of cities, choose either 51 or 100
rreturn: city_loc_list (list), optimum_tour_city (list), episode_length (int)
mmn
if n_city == 51:
#-—--51 cities
#locations
city_loc_list = [[37,52],1[49,49],152,64]1,[20,261,[40,301,1(21,47]1,1(17,63]1,131,
621,152,331, [51,211, (42,411, [31,321,[5,25]\
, 12, 421,36, 16],I[52, 411,127, 231,117, 331,113, 131,157, 581,
—~[62, 421,[42, 571,[16, 571,[8 ,521,(7 ,38],[27, 68],[30, 48]\
, 43, 671,158, 48]1,[58, 271,137, 691,138, 46],[46, 10],[61, 331,
—~[62, 63]1,[63, 691,[32, 221,[45, 351,(59, 151,15 ,6],110, 17]\
, 21, 101,15 ,64]1,[30, 151,139, 101,132, 391,125, 321,125, 551,
—[48, 28]1,[56, 371,[30, 4011
#optimal solution for comparison
optimum_tour_city = [1,22,8,26,31,28,3,36,35,20,2,29,21,16,50,34,30,9,49,10,
—39,33,45,15,44,42,40,19,41,13,25,14,24,43,7,23,48\
,6,27,51,46,12,47,18,4,17,37,5,38,11,32]
#episode length
episode_length = 2

elif n_city == 100:

#-——100 cities
city_loc_list = [[-47,2],149,-21 1,135,-47 1,130,-47 1,[-39,-501 ,[-35,-271,1[~
34,9 1,([(-11,-8 1,[32,-44 1,[ 1,35 1, 36,37 1\
, [ 12,37 1,1 37,36 1, —-26,-81,[ -21,32],[ -29,131,1[ 26,-501,
[ -7,-36]1,[ -34,-21,[ 21,-401,1[ -25,461,[ -17,8 1,[ 21,27 1,[ —-31,-141\
, [ -15,-441,[ -33,-34]1,[ -49,45],[ -40,-11,[ -40,-331,[ -39,-
261, -17,-161,[ 17,-201,1[ 4,-11 1,0 22,34 1,1[ 28,24 1, -39,371\
,[ 25,41, -35,141, [ 34,-5 1,1 49,-431,1[ 34,-291,[ —-4,-501, [,
—0,-14 1, [ 48,-251,[ -50,-51,[ -26,0 1,[ -13,211,[ -6,-411,[ 40,-331\
, [ 12,-481,[ -38,161,[ -26,-381,[ —-42,16]1,[ 13,8 1,[ 4,-8 1,1,
—~-46,-20]1,[ -25,361,[ 22,21 1,1 43,-51,[ 24,0 1,[ -12,-321,1[ 47, 49 1\
, [ 31,-35],1[ 42,13 1,[ —-45,-451,[ —-48,-141,[ 28,23 1,[ 23,
431, 30,-251,[ 25,34 1, -7,32 1, —-48,421,[ 1,-26 1, -45,321,[-20,35]\

(continues on next page)
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, [ —-12,21]1,1 -41,-49],[ —-35,321,1[ -43,441,1[ —-43,471,1 27,20 7],
~[ -8,-9 1, 37,-111,1[ -18,161, [ —-41,431,[ -30,291,[ -31,-191,148,22 1\
,[ -45,-191,[ -15,301,[ 10,-8 1,[ 40,-331,1 20,20 1,[ -22,331,
—[ 42,-371,1 0,-8 1, -50,111,[ 37,-271,1 39,-431,[-7,32]11]
#optimal solution for comparison
optimum_tour_city = [1,97,53,51,38,16,7,28,19,46,60,22,84,76,47,86,78,36,74,
~72,27,80,79,85,21,57,94,15,75,90,71,100,10,12, 34\
,70,11,13,62,88,64,81,67,35,23,58,93,54,37,39,83,59, 2, 44,
—98,41,69,63,49,92,95,40,99,3,9,4,17,68,20,50,42,25,48,18,61,73,32,91, 55\
,33,43,96,82,8,31,14,24,87,6,26,52,5,77,65,29,30,89, 56, 66,
—45]
#episode length
episode_length = 2

else:
raise ValueError ('-—-error: n_city is not defined, either choose 51 or 100")

return city_loc_list, optimum_tour_city, episode_length

# ________________________________________________________
# User Parameters for RL Optimisation
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
try:
total_steps=int (sys.argv[l]) #get time steps as external argument (for quick_
—testing)
except:
total_steps=500 #or use default total time steps to run all optimizers
n_steps=12 #update frequency for A2C, ACKTR, PPO
n_city=51 #number of cities: choose 51 or 100

#-——get some data to initialize the enviroment——-—
city_locs,optimum_tour,episode_length=TSP_Data (n_city=n_city)

#create an enviroment object from the class

env=TSP (city_loc_list=city_locs, optimum_tour_city=optimum_tour,
episode_length=episode_length, method = 'dgn'")

#create a callback function to log data

cb_dgn=RLLogger (check_freg=n_city)

#To activate logger plotter, add following arguments to chb_dgn:

#plot_freq = 51,n_avg_steps=10, pngname='DON-reward'

#Also applicable to ACER.

#create a RL object based on the env object

dgn = DON (DQNPolicy, env=env, seed=1)

#optimise the enviroment class
dan.learn(total_timesteps=total_steps*n_city, callback=cb_dgn)

env=TSP (city_loc_list=city_locs, optimum_tour_city=optimum_tour,
episode_length=episode_length, method = 'acer')
cb_acer=RLLogger (check_freg=n_city)

(continues on next page)
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acer = ACER (MlpPolicy, env=env, seed=1l)
acer.learn(total_timesteps=total_steps+n_city, callback=cb_acer)

env=TSP (city_loc_list=city_locs, optimum_tour_city=optimum_tour,
episode_length=episode_length, method = 'ppo')

cb_ppo=RLLogger (check_freg=1)

#To activate logger plotter, add following arguments to chb_ppo:

#plot_freq = 1, n_avg_steps=10, pngname='PPO-reward'

#Also applicable to A2C, ACKTR.

ppo = PPO2 (MlpPolicy, env=env, n_steps=n_steps, seed = 1)

ppo.learn(total_timesteps=total_steps, callback=cb_ppo)

env=TSP (city_loc_list=city_locs, optimum_tour_city=optimum_tour,
episode_length=episode_length, method = 'acktr')

cb_acktr=RLLogger (check_freg=1)

acktr = ACKTR(MlpPolicy, env=env, n_steps=n_steps, seed = 1)

acktr.learn(total_timesteps=total_steps, callback=cb_acktr)

env=TSP (city_loc_list=city_locs, optimum_tour_city=optimum_tour,
episode_length=episode_length, method = 'a2c'")

cb_a2c=RLLogger (check_freg=1)

a2c = A2C(MlpPolicy, env=env, n_steps=n_steps, seed = 1)

azc.learn(total_timesteps=total_steps, callback=cb_a2c)

# ________________________________

#Summary Results

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

print ('-——————————————— DON results —-—-————————————- ")
print ('The best value of x found:', cb_dgn.xbest)
print ('The best value of y found:', cb_dgn.rbest)
print('-———--———————— ACER results ——————————————~ ")
print ('The best value of x found:', cb_acer.xbest)
print ('The best value of y found:', cb_acer.rbest)
print('-————-----——~— PPO results —————————————— ")

(
(
(
(
(
(
(
print ('The best value of x found:', cb_ppo.xbest)
(
(
(
(
(
(
(

print ('The best value of y found:', cb_ppo.rbest)
print('-————-----——~— ACKTR results —————————-————~ ")

print ('The best value of x found:', cb_acktr.xbest)

print ('The best value of y found:', cb_acktr.rbest)

print ('——————————————- A2C results ——————————————— ")

print ('The best value of x found:', cb_a2c.xbest)

print ('The best value of y found:', cb_a2c.rbest)

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

#Summary Plots

# ________________________________

log_dgn = pd.DataFrame (cb_dgn.r_hist) .cummax (axis = 0).values
log_acer = pd.DataFrame (cb_acer.r_hist).cummax(axis = 0).values
log_ppo = pd.DataFrame (cb_ppo.r_hist).cummax (axis = 0).values
log_acktr = pd.DataFrame (cb_acktr.r_hist) .cummax(axis = 0) .values
log_a2c = pd.DataFrame (cb_a2c.r_hist) .cummax (axis = 0).values

(continues on next page)
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plt.figure ()

plt.plot (log_dgn, label = "DON")
plt.plot (log_acer, label = "ACER")
plt.plot (log_ppo, label = "PPO")
plt.plot (log_acktr, label = "ACKTR")
plt.plot (log_a2c, label = "A2C")

plt.xlabel ('Step')

plt.ylabel ('Best Tour Cost'")

plt.legend()

plt.savefig("tsp_history.png", format="png' ,dpi=300, bbox_inches="tight")
plt.show ()

Results

A summary of the results is shown below for the case of 51 cities. First, all five reinforcement learning algorithms
are compared in terms of minimizing the tour length (notice the y-axis is multiplied by -1 to make it a maximization
problem). The cost convergence shows that ACKTR is the best algorithm in this case. Therefore, we will limit the
reported results to ACKTR.

0 50 100 150 200 250 300 350 400
step

The best tour cost found by ACKTR is 427, which is really close to the optimal tour of 426. ACKTR tour is below

Episode: 156, Length of Tour : 427.0

while here is the target optimal tour

Length of Tour : 426.0

And here are the final results of all algorithms:

777777777777777 DON results ———————————————

The best value of x found: ['36', '7', 'g', '9', '10', '47"', '41', '11'"', '43', '44",
—'45', '4¢', '48', '21', '50', '51', '12', '37', '42', '24', '17', '27', '25', '14"',
%'30', 1311, |32l, VS:))Y, |34l, V351, |38l, V39Y, |40l, V49Y, |4Y, |15l, ’2', ’l', 13
', '5', '23', '20', '26¢', '19', '13', '22', 'le6', '18', '6', '28', '29']

(continues on next page)
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The best value of y found: -438

777777777777777 ACER results ——————————————

The best value of x found: ['35', '3', '12', "44', '23"', '49', '19', '2¢', '18', '32",
- '33', '45', '21', '28', '15', '30', '38', '9', '46', '17', '42', '14', '37', '48",
—-'39'", '47', '1', '41', '43', '25', ‘'1i1‘', '31', '20', '34', '1l6', '5', '24', '7', '51
', '50', '27', '4', '2', '6', '29', '36', '10', '13', '8', '40', '22']

The best value of y found: -431.0

777777777777777 PPO results ———————————

The best value of x found: ['51', '8', '27', '"42', '35*, "'11', '14*, '20', '17', '29'",
- '40', '38', '49', '50', '41', '34', '5', '36', '21', '13', '45', '37', '26', '1"',
~'19', '4¢', '22', '28', '2', '43', '30', '31', '3', ‘'47', '15', ‘'24', ‘"4, 7', '9",
— '10', '48', '12', '25', '18', '32', '33', '44', 'le6', '23', '39', '6']

The best value of y found: -437.0

777777777777777 ACKTR results ———————————————

The best value of x found: ['50', '37', '45"', '"49', '35"', "42', "40', '4', '38', '25'",
- '43', '1', '48', 'le6', '44', '13', '5', '28', '34', '39', '33', '12', '31', '24"',
—'14', '22', ‘'7', '27', ‘'19', '18', '6', '4¢', '32', '8', '23', '2', '51', '15', '17
', '11', '30', '29', ‘'10', '26', '41', '47', '21', '9', '3', '36', '20"']

The best value of y found: -427.0

777777777777777 A2C results —————————————

The best value of x found: ['47', 'S5', '14', '39', '34", '13', '35"', "41', '28', '33'",
— '4¢', '24', '19', '4', '22', '8', '43', '38', '1', '44', '23', '32', '15', 'le',
—'48', '45', ‘'42', '10', '12', '36', '27', '17', ‘'9v, '21', '7', '30', '25', '26',
-'37', '29', r'18', '31', '2', '11', '20', 'e', '49', '40', '51', '50', '3"']

The best value of y found: -436.0

2.4.2 Example 2: Ackley with EA

Example of solving the popular continuous optimization function “Ackley” using NEORL evolutionary algorithms.

Summary

* Algorithms: PSO, XNES, DE
* Type: Continuous, Single-objective, Unconstrained
* Field: Mathematical Optimization

Problem Description

The mathematical definition of Ackley is:

d
f(@) =20- QOeacp( -0.2 (111_21 cos(27raci)) + exp(1)

The Ackley function is continuous, non-convex and multimodal. This plot shows Ackley in two-dimensional (d = 2)
form.
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Ackley Function

25 e

20

fzl.22)

¥ <0 40

x1

Z domain: The function is usually evaluated on the hypercube x; € [—32,32], forall i = 1,...,d. The global minima
for the Ackley function is:

f(@) =0, atz* = 0,0, ...,0]

NEORL script

The solution below is for a 8-dimensional Ackley function (d = 8)

import numpy as np

import matplotlib.pyplot as plt
from neorl import PSO, DE, XNES
from math import exp, sqrt, cos, pi
np.random.seed (50)

def ACKLEY (individual) :
#Ackley objective function.
d = len(individual)
f=20 - 20 % exp(-0.2+sgrt(1.0/d * sum(x*+2 for x in individual))) \
+ exp(l) — exp(l.0/d * sum(cos(2+pixx) for x in individual))
return f

(continues on next page)
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#Setup the parameter space (d=8)

d=8

1b=-32

ub=32

BOUNDS={}

for i in range(l,d+1):
BOUNDS['x'"+str (i) ]=["'float', 1lb, ub]

pso=PSO (mode="'min', bounds=BOUNDS, fit=ACKLEY, npar=60,
cl=2.05, c2=2.1, speed_mech='constric', seed=1)
x_best, y_best, pso_hist=pso.evolute (ngen=120, verbose=1)

de=DE (mode="'min', bounds=BOUNDS, fit=ACKLEY, npop=60,
F=0.5, CR=0.7, ncores=1, seed=1)
x_best, y_best, de_hist=de.evolute (ngen=120, verbose=1)

amat = np.eye(d)

xnes = XNES (mode='min', fit=ACKLEY, bounds=BOUNDS, A=amat, npop=60,
eta_Bmat=0.04, eta_sigma=0.1, adapt_sampling=True, ncores=1, seed=1)

x_best, y_best, nes_hist=xnes.evolute (120, verbose=1)

#Plot fitness for both methods

plt.figure()

plt.plot (pso_hist['global fitness'], label='PSO")

plt.plot (de_hist['global fitness'], label='DE")

plt.plot (nes_hist['fitness'], label='NES'")

plt.xlabel ('Generation')

plt.ylabel ('Fitness")

plt.legend()

plt.savefig('ex2_fitness.png', format="png', dpi=300, bbox_inches="tight")
plt.show ()
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Results

Result summary is below for the three methods in minimizing the Ackley function.

— P50
— DE
— NES

4 20 40 60 80 100 120
Generation

777777777777777777777777 PSO Summary ——————————————————————————
Best fitness (y) found: 6.384158766614689e-05

Best individual (x) found: [-1.1202021943594622e-05, 1.3222010570577733e-05, -1.
—0037727362601807e-05, 9.389429054206202e-06, 2.4880207036828872e-05, 1.
—~6872593760849828e-05, 2.076883222303575e-05, 1.458529398292857e-05]

777777777777777777777777 DE Summary ——————————————————————————
Best fitness (y) found: 0.0067943767106268815
Best individual (x) found: [-0.0025073247154970765, 0.0020192971595931735, -0.
—0015127342773181872, -0.0010888556350037238, -0.0015830291353966849, -0.
—-000743962941194097, 0.0002963358699222367, 0.002260054765774109]
777777777777777777777777 NES Summary ——————————————————————————
Best fitness (y) found: 1.5121439047582896e-06
Best individual (x) found: [ 5.01688814e-07 -1.12353966e-07 7.64184537e-08 1.
—37674119e-08

3.66277722e-07 -5.94627000e-07 3.11206449e-08 -6.19858494e-07]

2.4.3 Example 3: Welded-beam design

Example of solving the heavily-constrained engineering optimization problem “Welded-beam design” using NEORL
with the ES algorithm tuned with Bayesian search.

Summary

¢ Algorithms: ES, Bayesian search for tuning
» Type: Continuous, Single-objective, Constrained

* Field: Structural Engineering

Problem Description

The welded beam is a common engineering optimisation problem with an objective to find an optimal set of the
dimensions h = x1, [ = x5, t = x3, and b = x4 such that the fabrication cost of the beam is minimized. This problem
is a continuous optimisation problem. See the Figure below for graphical details of the beam dimensions (%, [, ¢, b) to
be optimised.
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f-\\l\* P

The cost of the welded beam is formulated as

min f(7) = 1.1047127 25 + 0.04811x374(14 + z2),

subject to 7 rules/constraints, the first on the shear stress (7)

gl(-'f) T(f) — Tmazx < 07

the second on the bending stress (o)

three side constraints
93(%) =1 — x4 <0,
g4(%) = 0.104712% + 0.048112324(14 + 25) — 5 < 0,

g5(%) = 0.125 — 2, <0,

the sixth on the end deflection of the beam (d)
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and the last on the buckling load on the bar (F.)

while the range of the design variables are:

01<z <2, 0.1<uz, <10,

The derived variables and their related constants are expressed as follows:

T(f) — \/(T/)Z + 27_/7_1/2 + (TII)Q,

2R
P MR
7= — 7" = — M= P(L+122/2),
Torims 7 ( 2/2)
2 2
I B G )
o BT
22 (11 + x3)?
—2[v2 T2 T3
J \[1‘1132(124' 4 )
. 6PL
o(¥) = —,
T4z
4PL3
0T = ——
(Z) Exizy’

2,.6
4.013E4/ 3% E
Jn 36 z3
Pe(7) = L2 (1 “ar 4G>’

P =60001b, L = 14 in, E = 30 x 10° psi,
G =12 x 10° psi,
Tmaz = 13,600 psi, 0pmaz = 30,000 psi, dpmez = 0.25 in

NEORL script

import numpy as np
np.random.seed (50)

import matplotlib.pyplot as plt
from math import sqgrt

from neorl.tune import BAYESTUNE
from neorl import ES

#**********************************************************
# Part I: Original Problem
#**********************************************************
#Define the fitness function (for the welded beam)

def BEAM(X) :

y = 1.10471xx[0]#%2xx[1]+40.04811#x[2]*x[3]*(14.0+x[1])

(continues on next page)
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# parameters
P = 6000; L = 14; E = 30e+6; G = 12e+6;
t_max = 13600; s_max = 30000; d_max = 0.25;

M = Px(L+x[1]/2)

R = sqrt (0.25+ (x[1]%#2+ (x[0]+x[2]) %2))

J = 2% (sqrt (2) »x[0] *x[1]* (x[1]#%x2/1240.25%x(x[0]+x[2])**2));
P_c = (4.013+E/(6+L*%2))+x[2]*x[3]%%3%(1-0.25+x[2]*sqrt (E/G) /L) ;
tl = P/ (sqrt(2)«x[0]+x[1]); t2 = M«R/J;

t = sqrb (tl++2+tl1+t2+x[1]/R+t2x%2);

s = 6#P+L/(x[3]#x[2]%%2)

d = 4#P+L**3/(E+xx[3]*x[2]*%3);

# Constraints

gl = t-t_max; #done

g2 = s-s_max; #done

g3 = x[0]-x[3];

g4 = 0.10471xx[0]%%2+0.04811%x[2]*x[3]1*(14.0+x[1])-5.0;

gb = 0.125-x[0];

g6 = d-d_max;

g7 = P-P_c; #done

9=191,92,93,94,95,96,97]
g_round=np.round(np.array(g), 6)
wl=100

w2=100

phi=sum(max (item, 0) for item in g_round)
viol=sum(float (num) > 0 for num in g_round)

reward = (y + (wlxphi + w2xviol))
return reward

#**********************************************************
# Part II: Setup parameter space
#**********************************************************
#-—-setup the parameter space for the welded beam
lb=[0.1, 0.1, 0.1, 0.1]
ub=[(2.0, 10, 10, 2.0]
d2type=["'float', 'float', 'float', 'float']
BOUNDS={}
nx=4
for i in range (nx):
BOUNDS [ 'x'"+str (i+1)]=[d2typeli], 1lb[i], ub[i]]

#*************************************************************
# Part III: Define fitness function for hyperparameter tuning
#*************************************************************

def tune_fit (cxpb, mu, alpha, cxmode, mutpb) :

#-—-setup the ES algorithm
es=ES (mode="'min', bounds=BOUNDS, fit=BEAM, lambda_=80, mu=mu, mutpb=mutpb,
—alpha=alpha,
cxmode=cxmode, cxpb=cxpb, ncores=1, seed=1)

#-—-Evolute the ES object and obtains y_best

(continues on next page)
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#-—turn off verbose for less algorithm print-out when tuning
x_best, y_best, es_hist=es.evolute(ngen=100, verbose=0)

return y_best #returns the best score

#*************************************************************

# Part IV: Tuning

#*************************************************************

#Setup the parameter space for Bayesian optimisation

#VERY IMPORTANT: The order of these parameters MUST be similar to their order in tune_
—fit

#see tune_ fit

param_grid={

#def tune_fit (cxpb, mu, alpha, cxmode):

'cxppb': ['float', 0.1, 0.71, #cxpb is first (low=0.1, high=0.8,_
—type=float/continuous)

'mu': ["int', 30, 607, #mu is second (low=30, high=60, type=int/
—discrete)

'‘alpha':['grid', [0.1, 0.2, 0.3, 0.411, #alpha is third (grid with fixed values,
—type=grid/categorical)

'cxmode':['grid', ['blend', 'cx2point'll],

'mutpb': ['float', 0.05, 0.3]1} #cxmode is fourth (grid with fixed values, type=grid/
—categorical)

#setup a bayesian tune object

btune=BAYESTUNE (param_grid=param_grid, fit=tune_fit, ncases=30)
#tune the parameters with method .tune

bayesres=btune.tune (ncores=1, csvname='bayestune.csv', verbose=True)

print ('--—-Top 10 hyperparameter sets---—-")

bayesres = bayesres|[bayesres|['score'] >= 1] #drop the cases with scores < 1 (violates,
—~the constraints)

bayesres = bayesres.sort_values(['score'], axis='index', ascending=True) #rank the_
—scores from best (lowest) to worst (high)

print (bayesres.iloc[0:10,:]) #the results are saved in dataframe and ranked from_

—best to worst

#*************************************************************

# Part V: Rerun ES with the best hyperparameter set

#*************************************************************

es=ES (mode="min', bounds=BOUNDS, fit=BEAM, lambda_=80, mu=bayesres['mu'].iloc[O0],
mutpb=bayesres|['mutpb'].iloc[0], alpha=bayesres['alpha'].iloc[0],
cxmode=bayesres|['cxmode'].iloc[0], cxpb=bayesres['cxpb'].iloc[0],
ncores=1, seed=1)

x_best, y_best, es_hist=es.evolute(ngen=100, verbose=0)

print ('Best fitness (y) found:', y_best)
print ('Best individual (x) found:', x_best)

#Plot fitness convergence

plt.figure()

plt.plot(es_hist['local fitness'], label='ES'")
plt.xlabel ('Generation')

(continues on next page)
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plt.ylabel ('"Fitness'")

plt.legend()

plt.savefig('ex3_fitness.png', format='png', dpi=300, bbox_inches="tight")
plt.show ()

Results

After Bayesian hyperparameter tuning, the top 10 are

———-Top 10 hyperparameter sets————

cxpb mu alpha cxmode mutpb score
id
13 0.140799 35 0.3 blend 0.110994 1.849573
18 0.139643 37 0.3 blend 0.094496 1.925569
25 0.341248 39 0.1 cx2point 0.197213 2.098090
1 0.177505 32 0.3 blend 0.088050 2.144512
20 0.100000 35 0.3 blend 0.104131 2.198990
22 0.218197 30 0.3 blend 0.114197 2.228448
17 0.364451 34 0.3 blend 0.102634 2.235059
24 0.145365 42 0.3 blend 0.200532 2.292646
19 0.100000 55 0.3 blend 0.104209 2.349494
6 0.573142 38 0.4 cx2point 0.223231 2.349795

After re-running the problem with the best hyperparameter set, the convergence of the fitness function is shown below

— &

[ 20 40 60 80 100
Generation

while the best Z(x; — x4) and y = f(z) (minimum beam cost) are:

Best fitness (y) found: 1.849572817626747
Best individual (x) found: [0.18756483308730693, 4.053366828472939, 8.731994883504612,
— 0.2231022567643955]
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2.4.4 Example 4: Benchmarks

Example of accessing and plotting the built-in benchmark functions in NEORL.

Summary

* Algorithms: No Algorithms
» Type: Continuous, Single-objective

¢ Field: Benchmarking, Mathematical Optimization

Problem Description

We present an overview of how to access the benchmark functions in NEORL to allow easy testing of different
algorithms within the framework. For example, a long list of classical mathematical functions is saved within NEORL
such as the Rosenbrock function

d—1
f(f) = Z(l — 171')2 + 100(1'1'-1—1 — LE?)Q

—1

<

or Ackley function

d

é Z xf) _ exp(é Z cos(QW:Ei)) + exp(1)

i=1 i=1

£(&) =20 — 20e:cp( —0.2

or Bohachevsky function

d—1
f(@) = Z(Q:ZQ + 227, — 0.3 cos(3mz;) — 0.4 cos(4nwis1) +0.7)

i=1

More recent and advanced benchmark functions were also developed such as the CEC 2017 test suite, which includes
30 benchmark functions divided into three groups: Simple (f1-f10), Hybrid (f11-f20), and Composition (f21-f30).
The core of the CEC’2017 functions is similar to the classical functions listed above. However, CEC’2017 functions
are rotated and shifted to make them more complex to optimise. CEC’2017 functions are only defined at specific
dimensions, namely, d=2, 10, 20, 30, 50 or 100.

NEORL script

import numpy as np

import neorl.benchmarks.cecl7 as functions #import all cecl?7 functions

import neorl.benchmarks.classic as classics #import all classical functions
from neorl.benchmarks.classic import ackley, levy, bohachevsky #import specific,,
—functions

from neorl.benchmarks.cecl7 import £3, £10, £f21 #import cecl?7 specific functions
from neorl.benchmarks import bench_2dplot #import the built-in plotter

dl = 2 #set dimension for classical functions
d2 = 10 #set dimension for cec functions (choose between 2, 10, 20, 30, 50 or 100)
print('-———--------"- ")

(continues on next page)

2.4. Examples 127




NEORL Documentation, Release 1.8.1b

(continued from previous page)

for £ in classics.all_functions:

sample = np.random.uniform(low=0, high=10, size=dl)

y = f(sample)

print ('Function: ()}, x={}, y={}'.format (f._ name__, np.round(sample,?2), np.
—round(y,2)))

print('-————---- ")
print ('"CEC2017 Functions')
print('-———---— ")

for f in functions.all_functions:

sample = np.random.uniform(low=-10, high=10, size=d2)

y = f(sample)

print ('Function: {}, ={}, y={}'".format (f.__name__, np.round(sample,?2), np.
—round(y,2)))

print('-————----- ")
print ('Function Plotter')
print('-———--— ")

bench_2dplot (£3, domain=(-50,50), points=60)
bench_2dplot (£10, savepng='ex4_ f10.png'")
bench_2dplot (f21, savepng='ex4_ f21.png'")

bench_2dplot (ackley, savepng='ex4 ackley.png')
bench_2dplot (levy, domain=(-10,10))
bench_2dplot (bohachevsky, points=50)

#NOTE: CEC'17 functions: f11-f20, f29, f30 are not defined for d=2 dimensions,
#so the plotter will FAIL for these functions

Results

Selected results from the script output are shown below, which indicates the function evaluation with a random sample

Function: sphere, x=[4.17 7.2 ], y=69.28
Function: cigar, x=[0. 3.02]1, y=9140499.76
Function: rosenbrock, x=[1.47 0.92], y=151.59
Function: bohachevsky, x=[1.86 3.46], y=27.63
Function: griewank, x=[3.97 5.39], y=0.48
Function: rastrigin, x=[4.19 6.85], y=74.97
Function: ackley, x=[2.04 8.78], y=15.35

Function: f1, x=[ 3.89 -1.72 -9. 0.72 3.28 0.3 8.89 1.73 8.07 -7.251,
—y=276294024527.33

(continues on next page)
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Function: f2, x=[-7.21 6.15 -2.05 -6.69 8.55 -3.04 5.02 4.52 7.67 2.47]1, y=1.
—~39057e+18
Function: f3, x
—y=104499271.6
Function: f4, x
—43

Function: £5, x=[ 7.72 -2.85 8.17 2.47 -9.68 8.59 3.82 9.95 -6.55 -7.26], y=738.
— 8 2

Function: f6, x=[ 8.65 3.94 -8.68 5.11 5.08 8.46 4.23 -7.51 -9.6 -9.48], y=817.
—43

Function: £7, x=[-9.43 -5.08 7.2 0.78 1.06 6.84 -7.52 -4.42 1.72 9.39], y=9l6.
24

=[ 5.02 -3.02 -4.6 7.92 -1.44 9.3 3.27 2.43 -7.71 8.99]1, .

=[-1. 1.57 -1.84 -5.26 8.07 1.47 -9.94 2.34 -3.47 0.54], y=6142.

Few samples from the function plots are shown below

f10

2400

2200
2000
1800

1600
1400
1200

f21
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ackley

2.4.5 Example 5: CEC’2017 Test Suite

Example of solving the first 10 benchmark functions in CEC’2017 test suite with dimensionality d=2 using Differen-

tial Evolution.

Summary

* Algorithms: DE

* Type: Continuous, Single-objective

* Field: Benchmarking, Mathematical Optimization

Problem Description

The following notes are appliable to all test functions in CEC’2017

¢ All test functions in CEC’2017 are shifted by the vector o.

* Search range for all functions is [—100, 100]<.

* M, is the rotation matrix. Different rotation matrices are assigned to each function in the test suite.

* The shifted and rotated function is defined as F; = f;(M(Z — 0)) + F}

Where f(.) is the base function obtained from the classical functions group (e.g. Zakharov, Cigar, Rosenbrock). The
list of the functions in CEC’2017 is shown below based on the reference indicated at the table bottom.

Typ:

No.

Function

Fr=F (]

e
Unimodal Functions

1 Shifted and Rotated Bent Cigar Function
2 shifted and Rotated Sum of Different Power Function
3 shifted and Rotated ZakharovFunction

100
200
300

Multimodal Functions

4 shifted and Rotated Rosenbrock'sFunction
5 shifted and Rotated Rastrigin’sFunction

6 Shifted and Rotated Expanded Schaffer's Function

7 shifted and Rotated Lunacek Bi_Rastrigin Function

& shifted and Rotated Non-Continuous Rastrigin'sFunction

9 shifted and Rotated Levy Function

10 shifted and Rotated Schwefel'sFunction

400
500
600
700
800
900
1000

Hybrid Functions

11 Hybrid Function 1 (N=3)
12 Hybrid Function 2 (N=3)
13 Hybrid Function 3 (N=3)
14 Hybrid Function 4 (N=4)
15 Hybrid Function 5 (N=4)
16 Hybrid Function 6 (N=4)
17 Hybrid Function 7 (N=5)
18 Hybrid Function 8 (N=5)
19 Hybrid Function 9 (N=5)
20 Hybrid Function 10 (N=6)

1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Composition Functions

21 Composition Function 1 (N=3)
22 composition Function 2 (N=3)
23 Composition Function 3 (N=4)
24 Composition Function 4 (N=4)
25 Composition Function 5 (N=5)
26 Composition Function 6 (N=5)
27 Composition Function 7 (N=6)
28 Composition Function 8 (N=6)
29 Composition Function 9 (N=9)
30 ition Function 10 {N=3)

2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
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NEORL script

import numpy as np
import neorl.benchmarks.cecl7 as functions #import all cecl7 functions
from neorl import DE

reduced_func=functions.all_functions[:10] #keep only the first 10 functions

nx = 2 #set dimension

BOUNDS={}

for i in range(l,nx+1):
BOUNDS['x'+str(i)]=["float', -100, 100]

for FIT in reduced_func:
#setup and evolute PSO
de=DE (mode="'min', bounds=BOUNDS, fit=FIT, npop=60, F=0.5,
CR=0.7, ncores=1, seed=1l)

x_best, y_best, de_hist=de.evolute (ngen=100, verbose=0)

opt=float (FIT._ _name__ .strip('f'))*100

print ('Function: {}, x-DE={}, y-DE={}, y-Optimal={}'.format(FIT.__name__,
np.round(x_best, 2),
np.round(y_best, 2),
opt))

Results

After running the script above, the output looks like below, which shows that DE was able to converge to the optimal
value for all functions, of course, because the problem is simple with d=2 dimensions.

Function: fl1, x-DE=[-55.28 -70.43], y-DE=100.0, y-Optimal=100.0
Function: f2, x-DE=[-29.34 -17.05], y-DE=200.0, y-Optimal=200.0
Function: £3, x-DE=[-55.94 4.54]1, y-DE=300.0, y-Optimal=300.0
Function: f4, x-DE=[32.51 7.76], y-DE=400.0, y-Optimal=400.0
Function: f5, x-DE=[-17.41 56.17], y-DE=500.0, y-Optimal=500.0
Function: £6, x-DE=[ 79.09 -24.57], y-DE=600.0, y-Optimal=600.0
Function: f7, x-DE=[-46.65 42.28], y-DE=700.32, y-Optimal=700.0
Function: £8, x-DE=[ 32.16 -55.97], y-DE=800.0, y-Optimal=800.0
Function: £9, x-DE=[-24.48 2.3 1, y-DE=900.0, y-Optimal=900.0
Function: £10, x-DE=[-15.95 -59.89], y-DE=1000.33, y-Optimal=1000.0
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2.4.6 Example 6: Three-bar Truss Design

Example of solving the constrained engineering optimization problem “Three-bar truss design” using NEORL with

the BAT, GWO, and MFO algorithms.

Summary

* Algorithms: BAT, GWO, MFO
» Type: Continuous, Single-objective, Constrained

* Field: Structural Engineering

Problem Description

The Three-bar truss design is an engineering optimization problem with the objective to evaluate the optimal cross
sectional areas A; = A3 = x; and Ay = x5 such that the volume of the statically loaded truss structure is minimized
accounting for stress (o) constraints. The figure below shows the dimensions of the three-bar truss structure.

H

P "

The equation for the volume of the truss structure is
min f(Z) = (2v2x; + a2) x H,

subject to 3 constraints

p V2z1 + 9 <0
1 = - P 9
\/EIL‘% + 22179
X2
2=y 2P -0 <0,
\@.’L’% + 2x179
1
g3 = ————F+—P -0 <0,
T1 + V212

where 0 < 21 < 1,0 < 29 <1, H = 100cm, P = 2K N/cem?, and 0 = 2K N/em?.
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NEORL script

import numpy as np

from math import cos, pi, exp, e, sqgrt
import matplotlib.pyplot as plt

from neorl import BAT, GWO, MFO

def TBT (individual) :
"""Three-bar truss Design

mmn

x1 individual[O0]
x2 = individual[1l]

y = (2*sgrt(2)*x1 + x2) = 100
#Constraints
if x1 <= 0:
g = 11,1,1]
else:
gl = (sqgrt(2) «x1+x2)/ (sqrt (2) *x1++2 + 2%xx1%x2) * 2 — 2

g2 = x2/(sqrt (2) +x1*+2 + 2xx1lxx2) * 2 - 2
g3 1/(x1 + sgrt(2)*x2) %= 2 — 2
g = [gl,92,93]

g_round=np.round(np.array(g), 6)
wl=100
w2=100

phi=sum(max (item, 0) for item in g_round)
viol=sum(float (num) > 0 for num in g_round)

return y + wlxphi + w2xviol

# _________________________________
# Parameter space

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
nx = 2

BOUNDS = {}
for i in range(l, nx+1):
BOUNDS|["x'+str(i)]=["'float', 0, 1]

bat=BAT (mode="'min', bounds=BOUNDS, fit=TBT, nbats=10, fmin = 0 , fmax = 1, A=0.5,
—~r0=0.5, levy = True, seed = 1, ncores=1)
bat_x, bat_y, bat_hist=bat.evolute (ngen=100, verbose=1)

(continues on next page)
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gwo=GWO (mode="min', f£it=TBT, bounds=BOUNDS, nwolves=10, ncores=1, seed=1)
gwo_x, gwo_y, gwo_hist=gwo.evolute (ngen=100, verbose=1)

mfo=MFO (mode="min', bounds=BOUNDS, fit=TBT, nmoths=10, b = 0.2, ncores=1, seed=1)
mfo_x, mfo_y, mfo_hist=mfo.evolute (ngen=100, verbose=1)

plt.figure()

plt.plot (bat_hist['global fitness'], label = 'BAT")

plt.plot (gwo_hist['fitness'], label = 'GWO')

plt.plot (mfo_hist['global fitness'], label = 'MEFO'")

plt.legend()

plt.xlabel ('Generation')

plt.ylabel ('Fitness'")

plt.savefig ('TBT_fitness.png', format="png', dpi=300, bbox_inches="tight")
plt.show ()

Results

A summary of the results for the three differents methods is shown below with the best (x1,22) and y = f(z)
(minimum volume).

— BAT
— GWo
— MFO

Fitness

0 20 40 60 80 100
Generation

777777777777777777777777 BAT Summary ——————————————————————————
Best fitness (y) found: 263.90446934840577

Best individual (x) found: [0.79190302 0.39920471]
777777777777777777777777 GWO Summary ——————————————————————————
Best fitness (y) found: 263.99180199625886

Best individual (x) found: [0.78831222 0.41023435]
———————————————————————— MFO Summary —————-———--—— oo
Best fitness (y) found: 263.9847325242824

Best individual (x) found: [0.77788022 0.4396698 ]
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2.4.7 Example 7: Pressure Vessel Design

Example of solving the constrained engineering optimization problem “Pressure vessel design” using NEORL with
the HHO, ES, PESA, and BAT algorithms to demonstrate compatibility with mixed discrete-continuous space.

Summary

* Algorithms: HHO, ES, PESA, and BAT
» Type: Mixed discrete-continuous, Single-objective, Constrained

* Field: Mechanical Engineering

Problem Description

The pressure vessel design is an engineering optimization problem with the objective to evaluate the optimal thickness
of shell (15 = x1), thickness of head (1}, = x3), inner radius (R = x3), and length of shell (L = z4) such that the
total cost of material, forming, and welding is minimized accounting for 4 constraints. T and 7}, are integer multiples
of 0.0625 in., which are the available thicknesses of rolled steel plates, and R and L are continuous. The figure below
shows the dimensions of the pressure vessel structure.

The equation for the cost of the pressure vessel is

min f(Z) = 0.6224z 2324 + 1.77812923 + 3.166123 24 + 19.84z7 23,

subject to 4 constraints

g1 = —11 +0.019325 < 0,
go = —x2 + 0.0095423 <0,

4
g3 = —masxy — gwxg + 1296000 < 0,
g4:$4—240§0,

where 0.0625 < z; < 6.1875 (with step of 0.0625), 0.0625 < x5 < 6.1875 (with step of 0.0625), 10 < z3 < 200,
and 10 < x4 < 200.
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NEORL script

AHHFHAF AR A AR FAAHAFAA
# Import Packages
#HE#AF A HAF A HAF A EAFAAE

from neorl import HHO, ES, PESA, BAT
import math
import matplotlib.pyplot as plt

[ZEEE TS EEEEEEEE LSS LS L
# Define Vessel Function
#(Mixed discrete/continuous)
[ZE a2 LI EEEEEEEE LS EE SR
def Vessel (individual) :

mmon

Pressure vesssel design

x1: thickness (dl) —-—> discrete value multiple of 0.0625 in

x2: thickness of the heads (dl) —---> discrete value multiple of 0.0625 in
x3: inner radius (r) -——> cont. value between [10, 200]

x4: length (L) —-——> cont. value between [10, 200]

x=individual.copy ()

x[0] %= 0.0625 #convert dl to "in"
x[1] »= 0.0625 #convert d2 to "in"

y = 0.6224%x[0]*x[2]*x[3]1+1.7781*x[1]*x[2]**2+3.1661xx[0]**2xx[3]1+19.
—8A4xx[0]+x2+x[2];

gl = -x[0]+0.0193%x[2];

g2 = -x[1]+0.00954*x[2];

g3 = —math.pi*x[2]*+2xx[3]-(4/3)*math.pi*x[2]*%x3 + 1296000;
gd = x[3]-240;

g=[91,92,93,94]

phi=sum(max (item,0) for item in g)
eps=le-5 #tolerance to escape the constraint region
penality=le7 #large penality to add if constraints are violated

if phi > eps:
fitness=phi+penality
else:
fitness=y
return fitness

bounds = {}

bounds['x1'] = ['int', 1, 99]
bounds['x2'] = ['int', 1, 99]
bounds['x3'] = ['float', 10, 200]
bounds['x4'] = ['float', 10, 200]

#HE#AAHAF AR HA AR HAAAAH
# Setup and evolute HHO
FHEFAAHAFAA A HA AR EAF A

hho = HHO (mode='min', bounds=bounds, fit=Vessel, nhawks=30,

(continues on next page)
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int_transform='minmax', ncores=1, seed=1)
x_hho, y_hho, hho_hist=hho.evolute (ngen=200, verbose=False)
assert Vessel (x_hho) == y_hho

223 E ST LS LSS LS

# Setup and evolute ES

#HA##A A AR AR A AR HA A

es = ES(mode='min', fit=Vessel, cxmode='cx2point', bounds=bounds,
lambda_=60, mu=30, cxpb=0.7, mutpb=0.2, seed=1)

X_es, y_es, es_hist=es.evolute(ngen=200, verbose=False)

assert Vessel (x_es) == y_es

#tHA#FA A AR A AAHARAHAAHAS

# Setup and evolute PESA

###H# A AHAAAAARAAHA RS

pesa=PESA (mode="'min', bounds=bounds, fit=Vessel, npop=60, mu=30, alpha_init=0.1,
alpha_end=1.0, cxpb=0.7, mutpb=0.2, alpha_backdoor=0.15, seed=1)

X_pesa, y_pesa, pesa_hist=pesa.evolute (ngen=200, verbose=False)

assert Vessel (x_pesa) == y_pesa

#EHFAHH A A A A H AR A AR

# Setup and evolute BAT

223 E TSI EEEEESEE LS

bat=BAT (mode="min', bounds=bounds, fit=Vessel, nbats=50, fmin = 0 , fmax = 1,
A=0.5, r0=0.5, levy = True, seed = 1, ncores=1)

x_bat, y_bat, bat_hist=bat.evolute (ngen=200, verbose=1)

assert Vessel (x_bat) == y_bat

#HHAAFRAAFRAAFRAAFRAAFAA
# Plotting
#tH#A AR FAA A RAA A RAAAAH

plt.figure()

plt.plot (hho_hist['global fitness'], label='HHO'")
plt.plot (es_hist['global fitness'], label='ES')
plt.plot (pesa_hist, label='PESA')

plt.plot (bat_hist['global fitness'], label='BAT'")
plt.xlabel ('Generation')

plt.ylabel ('"Fitness'")

#plt.ylim([0,10000]) #zoom in

plt.legend()
plt.savefig('ex7_pv_fitness.png',format="png', dpi=300, bbox_inches="tight")
plt.show ()

s dadasdad st adaddadi
# Comparison
#HEH AR AHA AR AHAA AR AAE

'-——Best HHO Results—-——-")
x_hho)
y_hho)
'-——Best ES Results——-")

print (
print (
print (
print (
print (x_es)

print (y_es)

print ('---Best PESA Results---")
print (x_pesa)

print (y_pesa)

(continues on next page)
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print ('---Best BAT Results—---")
print (x_bat)
print (y_bat)

Results

A summary of the results is shown below with the best (21, z2, z3,24) and y = f(x) (minimum vessel cost). PESA
seems to be the best algorithm in this case.

— HHO
40000 £s

—— PESA

35000 iy

30000
£ 25000
* 20000

15000

10000

5000

0 25 50 75 100 125 150 175 200
eneration

Function: Vessel

Best fitness (y) found: 6450.086928941204

Best individual (x) found: [16. 8. 51.38667573 87.7107088 ]
777777777777777777777777 ES Summary - —————

Best fitness (y) found: 7440.247037114203

Best individual (x) found: [19, 10, 59.20709018618041, 39.15211859223507]
777777777777777777777777 PESA Summary ——————————————————————————

Best fitness (y) found: 6446.821261696037

Best individual (x) found: [16, 8, 51.45490215425688, 87.29635265232538]
———————————————————————— BAT Summary ——————————————————————————

Best fitness (y) found: 6820.372175171242

Best individual (x) found: [18. 9. 58.29066654 43.68984579]

2.4.8 Example 8: Pressure Vessel Design with Demonstration of Categorical Pa-
rameter

Example of solving the constrained engineering optimization problem “Pressure vessel design” using NEORL with
HHO, ES, PESA, and BAT algorithms to demonstrate compatibility with mix of continuous, discrete, and categorical
spaces.
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Summary

¢ Algorithms: HHO, ES, PESA, BAT
* Type: Mixed discrete-continuous-categorical, Single-objective, Constrained

* Field: Mechanical Engineering

Problem Description

The pressure vessel design is an engineering optimization problem with the objective to evaluate the optimal thickness
of shell (75 = x1), thickness of head (1}, = x3), inner radius (R = x3), and length of shell (L = z4) such that the
total cost of material, forming, and welding is minimized accounting for 4 constraints. T and 7}, are integer multiples
of 0.0625 in., which are the available thicknesses of rolled steel plates, and R and L are continuous. Unlike Example
7, Ty, will be modeled as a categorical parameter to demonstrate compatibility with a mix of continuous, discrete, and
categorical parameters. The figure below shows the dimensions of the pressure vessel structure.

The equation for the cost of the pressure vessel is

min f(7) = 0.6224z 2324 + 1.7781z923 + 3.166125 24 + 19.84z 723,

subject to 4 constraints

g1 = —x1 +0.0193z3 < 0,
go = — 5 + 0.00954z5 < 0,

2 4 3
g3 = —TMX3T4 — §7T.Z‘3 + 1296000 < 0,
gs =4 — 240 <0,
where 0.0625 < z1 < 6.1875 (with step of 0.0625), x5 € {0.0625,0.125, 0.1875,0.25,0.3125,0.375,0.4375, 0.5, 0.5625, 0.625 },
10 < z3 <200, and 10 < 24 < 200.

NEORL script

AHHFHAF AR A AR FAAEAFAA
# Import Packages
#tHE#AF A HAF A EAF A EAFAAE

from neorl import HHO, ES, PESA, BAT
import math
import matplotlib.pyplot as plt

#HAA#A A AR A A AR A AR AAAA
# Define Vessel Function
#Mixed discrete/continuous/grid

(continues on next page)
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#HA#FA A AR A AAH AR HA AR FAAAAARAAAA
def Vessel (individual) :

mmn

Pressure vesssel design

x1: thickness (dl) —-—> discrete value multiple of 0.0625 in

x2: thickness of the heads (d2) —---> categorical value from a pre—-defined grid
x3: inner radius (r) —-——> cont. value between [10, 200]

x4: length (L) -—--> cont. value between [10, 200]

mmn

x=individual.copy ()
x[0] %= 0.0625 #convert dl to "in"

y = 0.6224%x[0]*x[2]#x[3]+1.7781+x[1]*x[2]**2+3.1661+x[0]*+2+x[3]+19.
84k [0]*%x2xx[2];

gl = -x[0]+0.0193%x[2];

g2 = -x[1]+0.00954xx([2];
g3 = —math.pi*x[2]*+2+xx[3]-(4/3)*math.pi*x[2]**3 + 1296000;
g4 = x[3]-240;

g=[91,92,93,94]

phi=sum(max (item,0) for item in qg)
eps=le-5 #tolerance to escape the constraint region
penality=le7 #large penality to add if constraints are violated

if phi > eps:
fitness=phi+penality
else:
fitness=y
return fitness

bounds = {}

bounds['x1'"'] = ['int', 1, 99]

bounds|['x2"] ['grid', (0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.
—5625, 0.625)]

bounds [ 'x3"] ["float', 10, 200]

bounds['x4'] = ['float', 10, 200]

ZE a2 E IS EEEEEE L LSS

# Setup and evolute HHO

#HAFFAAHAAAAAAHAAHHAAHAH

hho = HHO (mode='min', bounds=bounds, fit=Vessel, nhawks=50,
int_transform='minmax', ncores=1, seed=1)

x_hho, y_hho, hho_hist=hho.evolute (ngen=200, verbose=False)

assert Vessel (x_hho) == y_hho

#HAFFAAHAAAAAAHAAHHAAHAH

# Setup and evolute ES

#HA#FAAAA AR AR A AR HAAHAS

es = ES(mode="'min', fit=Vessel, cxmode='cx2point', bounds=bounds,
lambda_=60, mu=30, cxpb=0.7, mutpb=0.2, seed=1)

X_es, y_es, es_hist=es.evolute(ngen=200, verbose=False)

assert Vessel (x_es) == y_es

#HAAFFAAAFAAFFAAAFAAFHAS

(continues on next page)
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# Setup and evolute PESA

223 a2 E IS EEEE LSS LS

pesa=PESA (mode="min', bounds=bounds,
alpha_end=1.0, cxpb=0.7,

X_pesa, y_pesa,

assert Vessel (x_pesa) == y_pesa

223 a2 SIS EEE S LSS LS

# Setup and evolute BAT

#HA#FA A AR AR AHARAHAAHAS

mutpb=0.2,
pesa_hist=pesa.evolute (ngen=200,

fit=Vessel, npop=60, mu=30, alpha_init=0.01,
alpha_backdoor=0.05)
verbose=False)

bat=BAT (mode="'min', bounds=bounds, fit=Vessel, nbats=50, fmin = 0 , fmax = 1,
A=0.5, r0=0.5, levy = True, seed = 1, ncores=1)
x_bat, y_bat, bat_hist=bat.evolute (ngen=200, verbose=1)

assert Vessel (x_bat) == y_bat
#HEAEAEA A AHA R A RAAHAHA

# Plotting

####A A AHAAARARAAHAHAAAA

plt.figure()

plt.plot (hho_hist['global fitness'],
plt.plot (es_hist['global fitness'],
plt.plot (pesa_hist, label="'PESA')
plt.plot (bat_hist['global fitness'],
plt.xlabel ('Generation')

plt.ylabel ('Fitness')
plt.ylim([0,100007])
plt.legend()

plt.
plt.

#zoom 1in

show ()

#HHAAFRAAFRAAFRAAFRAAFAA
# Comparison

[ddddadzdaaadaaddadddadi

print ('---Best HHO Results—---")
print (x_hho)

print (y_hho)

print ('---Best ES Results-——--")
print (x_es)

print (y_es)

print ('---Best PESA Results---")
print (x_pesa)

print (y_pesa)

print ('---Best BAT Results—-—--")
print (x_bat)

print (y_bat)

savefig('ex8_pv_fitness.png', format="'png',

label="HHO")
label="ES")

label="BAT")

dpi=300, bbox_inches="tight")
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Results

A summary of the results is shown below with the best (21, x2,z3,24) and y = f(z) (minimum vessel cost). The
figure is zoomed to a relevant y-scale that shows all methods clearly. HHO is best algorithm for this case.

10000
- u

6000

Fitness

4000

— HHO
2000 3

— PESA
— BAT

0

0 25 50 75 100 125 150 175 200
Generation

Function: Vessel

Best fitness (y) found: 6076.871989481831

Best individual (x) found: [13.0, 0.4375, 41.958165787313035, 178.38267571773872]
777777777777777777777777 ES Summary ——————————————————————————

Best fitness (y) found: 6689.115350860009

Best individual (x) found: [17, 0.5, 52.39036909796362, 80.46789374601103]
———————————————————————— PESA Summary ——————————————————————————

Best fitness (y) found: 6420.244320020875

Best individual (x) found: [15, 0.5, 48.11672433151982, 114.1606860286298]
777777777777777777777777 BAT Summary ——————————————————————————

Best fitness (y) found: 6194.304291280144

Best individual (x) found: [13.0, 0.4375, 41.040436491185176, 190.26719495938994]

2.4.9 Example 9: Cantilever Stepped Beam

Example of solving the constrained engineering optimization problem “Cantilever Stepped Beam” as well as a simpler
square case using NEORL with the PSO, DE, SSA, GWO, MFO, BAT, and PESA?2 algorithms.

Summary

 Algorithms: PSO, DE, SSA, GWO, MFO, BAT, PESA2
* Type: Continuous, Single-objective, Constrained

* Field: Structural Engineering

Problem Description

The cantilever stepped beam design is an engineering optimization problem with the objective to evaluate the optimal
heights ©1 — x5 and widths xg — x1¢ of the five rectangular segments such that the volume of the statically loaded
cantilever beam is minimized accounting for stress (o) constraints. The figure below shows the dimensions of the
cantilever structure
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NN

The equation for the volume of the cantilever beam is

where [; = 100 cm. The design is subject to 11 constraints:

P
Y
1 2 3 - 5 I h;
v
n—!;—l—f_,—l—!s {..f i’j_‘ _>|b||<_
(™ L o
5
min f(Z) = Zxﬁi-i-&ﬁlia
r i=1
Pl
= ——2- — 14000 < 0,
L5210
P(ls +1
go = DU 1) 4000 <,
T4Tg
P(ls 4 1s +1
g3 = Aggé;tgéitgﬁl — 14000 < 0,
3Ty
P(ls + 1y + 15 +1
g = (5+4+23+2)—14000§0,
T2T%
P(ls + 1y + 13+ 1o +1
g5 = (5+4+32+2+1)—14000§0,
T1Tg
go = 20 90 <0,
Zs
gr =2 —20<0,
Ty
gs = 5 _20 <0,
x3
go= 2 —20 <0,
T2
g0 = =2 20 <0,
T
PB /1 7T 19 37 61
S (L L R e
gu 3E(I5 I4+13+12+11) =

where 1 <z; <5(i=1,2,...,5),30 < 2; <65(i=6,7,...,10), P = 50,000N, and E = 2 x 10" N/em?.

NEORL script

#************************************************************

# Cantilever Stepped Beam

#************************************************************

import numpy as np

(continues on next page)
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import matplotlib.pyplot as plt

from neorl import PSO, DE, SSA, GWO, MFO, BAT, PESA2
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
# Fitness function
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
def CSB(individual) :
"""Cantilever Stepped Beam
individual[i = 0 - 4] are beam widths
individual[i = 5 - 9] are beam heights
check=all ([item >= BOUNDS|['x'+str (i+1)][1l] for i,item in enumerate (individual)]) \

and all([item <= BOUNDS['x'+str(i+1)][2]
—enumerate (individual) 1)
if not check:

raise Exception ('-—-error check fails')

50000

= 2 % 10%%*7
100
np.zeros(11)

for i,item in

P
E
1
S)
g[0] = 600%P/ (individual([4] * individual[9]x%2) - 14000
g[l] = 6%Px(2%1)/ (individual[3] * individual[8]x%2) — 14000
gl[2] = 6#%Px(3%1)/(individual([2] * individual[7]#%2) - 14000
g[3] = 6%Px(4%1)/(individual[l] * individual[6]*%2) — 14000
gl[4] = 6#Px(5+1)/ (individual [0] * individual[5]#*%2) — 14000
gl5] =0
g[6] = individual[9]/individual[4] - 20
g[7] = individual[8]/individual[3] - 20
g[8] = individual[7]/individual([2] - 20
g[9] = individual[6]/individual[l] - 20
g[1l0] = individual[5]/individual[0] - 20
g_round=np.round (g, 6)
wl=1000
w2=1000
phi=sum(max (item, 0) for item in g_round)
viol=sum(float (num) > 0 for num in g_round)
V=20
for i in range(5):

V += individual[i] * individual[i+5] = 1

return V + wlxphi + w2xviol

nx=10
BOUNDS={}
for i in range (1,

6) :
BOUNDS|['x'"+str(i)]=['float', 1, 5]
for i in range(6, 11):
BOUNDS['x'"+str(i)]=['float', 30, 65]

(continues on next page)
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pso=PSO (mode="'min', bounds=BOUNDS, fit=CSB, cl=2.05, c2=2.1, npar=50, speed_mech=
—'constric', ncores=1, seed=1)
pso_x, pso_y, pso_hist=pso.evolute (ngen=300, verbose=0)

de=DE (mode="'min', bounds=BOUNDS, fit=CSB, npop=50, F=0.5, CR=0.7, ncores=1, seed=1l)
de_x, de_y, de_hist=de.evolute (ngen=300, verbose=0)

ssa=SSA (mode="'min', bounds=BOUNDS, fit=CSB, nsalps=50, ncores=1, seed=1)
ssa_x, ssa_y, ssa_hist=ssa.evolute(ngen=300, verbose=0)

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

# BAT

# _________________________________

bat=BAT (mode="min', bounds=BOUNDS, fit=CSB, nbats=50, fmin = 0 , fmax = 1, A=0.5,
—r0=0.5, levy = True, seed = 1, ncores=1)

bat_x, bat_y, bat_hist=bat.evolute (ngen=300, verbose=0)

gwo=GWO (mode="min', f£it=CSB, bounds=BOUNDS, nwolves=50, ncores=1, seed=1)
gwo_x, gwo_y, gwo_hist=gwo.evolute (ngen=300, verbose=0)

mfo=MFO (mode="min', bounds=BOUNDS, fit=CSB, nmoths=50, b = 0.2, ncores=1, seed=1)
mfo_x, mfo_y, mfo_hist=mfo.evolute (ngen=300, verbose=0)

pesa2=PESA2 (mode="'min', bounds=BOUNDS, fit=CSB, npop=50, nwolves=5, ncores=1, seed=1)
pesaZ_x, pesalZ_y, pesa2_hist=pesa2.evolute (ngen=600, replay_every=2, verbose=0)

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

# Plot

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

plt.figure()

plt.plot (pso_hist['global fitness'], label = 'PSO")
plt.plot (de_hist['global fitness'], label = 'DE')
plt.plot(ssa_hist['global fitness'], label = 'SSA'")
plt.plot (bat_hist['global_ fitness'], label = 'BAT")
plt.plot (gwo_hist['fitness'], label = 'GWO'")
plt.plot (mfo_hist['global fitness'], label = 'MFO'")
plt.plot (pesa2_hist, label = 'PESA2'")

plt.legend()

plt.xlabel ('Generation')

(continues on next page)
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plt.ylabel ('"Fitness'")

plt.ylim (0, 150000)

plt.savefig('CSB_fitness.png', format="png', dpi=300, bbox_inches="tight")
plt.show()

#************************************************************

# Square Cantilever Stepped Beam

#************************************************************

import numpy as np

from math import cos, pi, exp, e, sqgrt

import matplotlib.pyplot as plt

from neorl import PSO, DE, SSA, GWO, MFO, BAT, PESA2

def CSB_square (individual) :
"""Square Cantilever Stepped Beam
individual[i = 0 - 4] are beam heights and widths

mmn

check=all ([item >= BOUNDS|['x'+str(i+1l)][1l] for i,item in enumerate (individual)]) \
and all([item <= BOUNDS['x'+str (i+1)][2] for i,item in_
—enumerate (individual) ])
if not check:
raise Exception ('-—-error check fails')

g = 61/individual [0]**3 + 37/individual[1]**3 + 19/individual([2]**3 + 7/
—individual [3]*%3 + 1/individual [4]+*3 — 1

g_round=np.round (g, 6)
wl=1000
#phi=max (g_round, 0)
if g_round > O:

phi =1
else:

phi = 0

V = 0.0624% (np.sum(individual))

return V + wlxphi

nx=>5

BOUNDS={}

for i in range(l, 6):
BOUNDS['x'+str(i)]=['float', 0.01, 100]

(continues on next page)
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pso=PSO (mode="min', bounds=BOUNDS, fit=CSB_square, cl=2.05, c2=2.1, npar=50, speed_
—mech="'constric', ncores=1, seed=1)
PSOo_X, pPsSo_y, pso_hist=pso.evolute (ngen=200, verbose=0)

de=DE (mode="'min', bounds=BOUNDS, fit=CSB_square, npop=50, F=0.5, CR=0.7, ncores=1,

de_x, de_y, de_hist=de.evolute (ngen=200, verbose=0)

ssa=SSA (mode='min', bounds=BOUNDS, fit=CSB_square, nsalps=50, ncores=1, seed=1l)
ssa_x, ssa_y, ssa_hist=ssa.evolute (ngen=200, verbose=0)

bat=BAT (mode='min', bounds=BOUNDS, fit=CSB_square, nbats=50, fmin = 0 , fmax = 1, A=0.
-5, r0=0.5, levy = True, seed = 1, ncores=1)
bat_x, bat_y, bat_hist=bat.evolute (ngen=200, verbose=0)

gwo=GWO (mode="min', bounds=BOUNDS, fit=CSB_square, nwolves=50, ncores=1, seed=1)
gwo_x, gwo_y, gwo_hist=gwo.evolute (ngen=200, verbose=0)

mfo=MFO (mode="min', bounds=BOUNDS, fit=CSB_square, nmoths=50, b = 0.2, ncores=1,
—seed=1)
mfo_x, mfo_y, mfo_hist=mfo.evolute (ngen=200, verbose=0)

pesa2=PESA2 (mode="'min', bounds=BOUNDS, fit=CSB_square, npop=50, nwolves=5, ncores=1,
—seed=1)
pesa2_x, pesalZ_y, pesa2_hist=pesa2.evolute (ngen=400, replay_every=2, verbose=0)

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

# Plot

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

plt.figure()

plt.plot (pso_hist['global fitness'], label = 'PSO")
plt.plot (de_hist['global fitness'], label = 'DE'")
plt.plot(ssa_hist['global fitness'], label = 'SSA'")
plt.plot (bat_hist['global_ fitness'], label = 'BAT")
plt.plot (gwo_hist['fitness'], label = 'GWO'")
plt.plot (mfo_hist['global fitness'], label = 'MFO'")
plt.plot (pesa2_hist, label = 'PESA2'")

plt.legend()

plt.xlabel ('Generation')

(continues on next page)
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plt.ylabel ('"Fitness'")
plt.savefig ('CSB_square_fitness.png', format="png', dpi=300, bbox_inches="tight")
plt.show ()

Results

A summary of the results for the different methods is shown below with the best Z and y = f(z) (minimum volume).
DE and PESA2 show the best results

140000 — S0
120000 — SSA

100000 — GwWo

80000

Fitness
A
2
4

60000

40000

20000

0

0 50 100 150 200 250 300
Generation

———————————————————————— PSO Summary ——————————————————————————
Best fitness (y) found: 67335.91306205148
Best individual (x) found: [3.5688543506518657, 2.7791479019993583, 2.52509774848689¢6,
— 2.5931709214818746, 3.0184400437701497, 54.792949608125554, 55.55687861890972, 50.
—~45798494270985, 40.66285990348347, 30]
777777777777777777777777 DE Summary ——————————————————————————
Best fitness (y) found: 62253.08088965673
Best individual (x) found: [3.0024484908957634, 2.805060577916484, 2.5489794459150485,
— 2.2104364777790244, 1.7812440232731417, 59.83601779613085, 55.29672939889619, 50.
—28650239860514, 44.1239666136573, 34.83693680366301]
777777777777777777777777 SSA Summary ————— - - - ————
Best fitness (y) found: 64883.21386055779
Best individual (x) found: [ 3.01217612 3.12691389 2.66584391 2.56789564 2.
—26413108 59.64053204
52.35626719 49.10660541 40.85291814 30.76422498]
777777777777777777777777 BAT Summary ——————————————————————————
Best fitness (y) found: 85509.99706478164
Best individual (x) found: [ 3.24944962 3.15901556 3.71034211 2.88044491 2.
—72539593 57.42189701
63.18019888 41.62463495 57.60433819 54.50783013]
777777777777777777777777 GWO Summary ——————————————————————————
Best fitness (y) found: 64217.56500668205
Best individual (x) found: [ 3.0490241 2.82805632 2.54882906 2.60647295 1.
—91892183 59.32877115
55.25800387 50.22171706 40.6816295 36.98217938]
777777777777777777777777 MFO Summary ——————————————————————————
Best fitness (y) found: 68284.66539072228
Best individual (x) found: [ 3.00200798 3.04903017 2.52470544 4.76307633 2.
—38149254 59.7430926
53.04777538 50.46763269 30.00000001 30.00007271]

Best fitness (y) found: 62491.80715494685

(continues on next page)
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Best individual (x) found: [3.0160894636962894, 2.7812536032709683, 2.
—5788148288206765, 2.22105253054037, 1.9267356857359532, 59.60349505892154, 55.
—515872598414006, 49.94170599870354, 43.93631599428571, 33.408629968533766]

Simple Square Case

A simpler case of the cantilever stepped beam design is shown in the figure below where the heights and widths of
each section of the beam are equal (z; = x;15) and the cantilever is hollow with constant thickness.
e I/"'\ I,/"'\ Py r,«z“\' rﬂ'“\

I'\__?./'I'SJ\_“J |3| r
r

— — LY

' connstant

The equation for the weight of the square cantilever beam to be minimized is:

with a single constraint

import numpy as np

from math import cos, pi, exp, e, sqgrt

import matplotlib.pyplot as plt

from neorl import PSO, DE, SSA, GWO, MFO, BAT, PESA2

def CSB_square (individual) :
"""Square Cantilever Stepped Beam
individual[i = 0 - 4] are beam heights and widths

mmn

check=all ([item >= BOUNDS['x'4+str (i+1l)][1l] for i,item in enumerate (individual)]) \
and all ([item <= BOUNDS['x'+str(i+1)][2] for i,item in_
—enumerate (individual) ])
if not check:
raise Exception ('-—-error check fails')

g = 61/individual [0]**3 + 37/individual([1]**3 + 19/individual([2]**3 + 7/
—individual [3]*%3 + 1/individual [4]+*3 — 1

(continues on next page)
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g_round=np.round (g, 6)
wl=1000
#phi=max (g_round, 0)
if g_round > 0:

phi =1
else:

phi = 0

V = 0.0624% (np.sum(individual))

return V + wlxphi

nx=>5

BOUNDS={}

for i in range(l, 6):
BOUNDS['x'"+str(i)]=["float', 0.01, 100]

pso=PSO (mode="'min', bounds=BOUNDS, fit=CSB_square, cl=2.05, c2=2.1, npar=50, speed_
—mech="'constric', ncores=1, seed=1)
pso_x, pso_y, pso_hist=pso.evolute (ngen=200, verbose=0)

de=DE (mode="'min', bounds=BOUNDS, fit=CSB_square, npop=50, F=0.5, CR=0.7, ncores=1,
—seed=1)
de_x, de_y, de_hist=de.evolute (ngen=200, verbose=0)

ssa=SSA (mode="'min', bounds=BOUNDS, fit=CSB_square, nsalps=50, cl=0.05, ncores=1,
—seed=1)
ssa_x, ssa_y, ssa_hist=ssa.evolute(ngen=200, verbose=0)

bat=BAT (mode='min', bounds=BOUNDS, fit=CSB_square, nbats=50, fmin = 0 , fmax = 1, A=0.
-5, r0=0.5, levy = True, seed = 1, ncores=1)
bat_x, bat_y, bat_hist=bat.evolute (ngen=200, verbose=0)

gwo=GWO (mode="min', bounds=BOUNDS, fit=CSB_square, nwolves=50, ncores=1, seed=1)
gwo_x, gwo_y, gwo_hist=gwo.evolute (ngen=200, verbose=0)

(continues on next page)
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mfo=MFO (mode="min', bounds=BOUNDS, fit=CSB_square, nmoths=50, b = 0.2, ncores=1,
—seed=1)
mfo_x, mfo_y, mfo_hist=mfo.evolute (ngen=200, verbose=0)

pesa2=PESA2 (mode="'min', bounds=BOUNDS, fit=CSB_square, npop=50, nwolves=5, ncores=1,
—seed=1)
pesa2_x, pesa2_y, pesaz_hist=pesa2.evolute(ngen=400, replay_every=2, verbose=0)

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

# Plot

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

plt.figure()

plt.plot (pso_hist, label = 'PSO')

plt.plot (de_hist, label = 'DE')
plt.plot(ssa_hist['global fitness'], label = '"SSA'")
plt.plot (bat_hist['global fitness'], label = 'BAT'")
plt.plot (gwo_hist['fitness'], label = 'GWO'")
plt.plot (mfo_hist['global fitness'], label = 'MFO'")
plt.plot (pesa2_hist, label = 'PESA2'")

plt.legend()

plt.xlabel ('Generation')
plt.ylabel ('Fitness'")
plt.savefig ('CSB_square_fitness.png', format="png', dpi=300, bbox_inches="tight")

Results

A summary of the results for the different methods is shown below with the best Z and y = f(«) (minimum volume).
All methods seem to provide competitive performances.

— PSO
— DE
— ssA
— BAT
— GWo
— MFO
—— PESA2

Fitness

H N W s ow e N o

0 25 50 75 100 125 150 175 200
Generation

777777777777777777777777 PSO Summary ——————————————————————————

Best fitness (y) found: 1.3399752313729163

Best individual (x) found: [6.009251848152787, 5.30657072479825, 4.487735398237302, 3.
—5223666630459225, 2.148037406998374]

———————————————————————— DE Summary —————————-———-— oo

Best fitness (y) found: 1.3400333309297923

Best individual (x) found: [6.009134740254158, 5.313241105010421, 4.465292783694765,
—3.529049287512202, 2.1581752074033305]

777777777777777777777777 SSA Summary ——-----—— oo

Best fitness (y) found: 1.3588143704307478

Best individual (x) found: [5.78402889 5.66053404 4.28387098 3.33467882 2.71275859]

(continues on next page)
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Best fitness (y) found: 1.3399823246990532

Best individual (x) found: [6.00500481 5.29566351 4.51093598 3.49613637 2.16633504]
777777777777777777777777 GWO Summary ————————————"—————— -~

Best fitness (y) found: 1.3401094136761165

Best individual (x) found: [6.03840936 5.27194855 4.46957895 3.52048465 2.17569089]
777777777777777777777777 MEFO Summary ——————————————————————————

Best fitness (y) found: 1.340072721543648

Best individual (x) found: [5.98884701 5.35435014 4.45583399 3.51864409 2.15784915]
777777777777777777777777 PESA2 Summary ——————————————————————————

Best fitness (y) found: 1.3399951046267742

Best individual (x) found: [6.0302855076764095, 5.324816195983351, 4.498012579038754, ,
—3.474272116432333, 2.1468941237341275]

2.4.10 Example 10: Knapsack Problem

Example of solving the classical discrete optimization problem “Knapsack Problem” (KP) using NEORL with state-
of-the-art reinforcement learning algorithms to demonstrate compatibility with discrete space.

Summary

 Algorithm: PPO,A2C, ACKTR, DQN, ACER
* Type: Discrete/Combinatorial, Single Objective, Constrained

* Field: Computational mathematics

Problem Description

The Knapsack Problem (KP) is another combinatorial problem that has been studied for decades. It often arises in
resource allocation problem, machine scheduling, and asset optimization for instance. It consists in maximizing the
value of a set of items placed in a bag limited by the weight capacity W of the bag. The figure below illustrates the
problem. The maximum weight that the bag can contain is 15kg. The optimum set of items is obtained by taking all
of them instead of the 12 kg one. A good heuristic is to choose the item with the lowest weight-to-value ratio.
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Formally, with i = 1, ..., n items, each characterized by their values and weights (v;, w;), the problem can be formu-
lated as:

n
max E v x;
i=1

n
s.t. Zwixi <W
i=1

x; € {0, 1}

where x; = 1 if the item ¢ is in the bag, otherwise x; = 0. This is called the 0-1 Knapsack Problem. The constraint
characterizes the fact that the capacity of the bag is limited by W, hence the sum of the weights Y ., w;x; of the
items should not exceed 1.

NEORL script

from
from
from
from

neorl.
neorl
neorl
neorl

benchmarks import KP

import PPO2, DOQON, ACER, ACKTR, A2C
import MlpPolicy, DQNPolicy

import RLLogger

import matplotlib
matplotlib.use('Agg"')

import matplotlib.pyplot as plt
import pandas as pd

(continues on next page)
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import numpy as np
import sys

def KP_Data(n_objects):

momnn

Function provides initial data to construct a Knapsack problem enviroment

:param n_objects: (int) number of objects, choose either 50 or 100
:return: obj_list (list), optimum knapsack (list), episode_length (int), weight_
—capacity (int)
if n_objects == 50:
#-——-50 objects

obj_list = [[3,4],1[8,41,1[4,21,19,41,1[5,91,(3,61,1[3,11,109,21,108,31,1[6,81,109,41,
—[4,21,14,71,105,11,106,41,15,81,102,11,15,71,02,51,1017,41,\
(6,31,18,21,17,7],14,8],15,8],12,11,(3,71,(7,4),19,11,1[1,41,[2,2],
—[6,41,(7,31,12,6]1,1(7,31,19,1), (1,11, (1,9],(2,31,(5,81,[5,1],1[3,9],\
(5,61,05,71,14,2],12,3],11,4],18,31,[7,51,[1,6]]

#optimal solution for comparison

optimum_knapsack = [1,2,3,4,7,8,9,10,11,12,14,15,16,17,18,20,21,22,23,25,26,
—28,29,31,32,33,35,36,39,41,43,44,45,48,49]

#episode length

episode_length = 2

weight_capacity = 125

elif n_objects == 100:

#---100 objects
obj_list = [[1,4],[9,5],[9,71,16,8],13,71,108,41,1[8,61,[2,1],[2,6]1,[9,71,1(8,2],
—~[6,61,16,91,06,7),104,41,17,81,101,91,11,31,105,31,108,11,\
(5,71,108,61,12,81,13,51,103,81,[4,31,18,21,1[6,71,[4,91,13,
-51,19,11,19,31,[5,61,12,21, (2,11, [5,9), (6,21, [1,3]1,(8,31,18,81,1[3,8],[4,6],\
(4,71, 09,71, 09,41,(8,8],102,7],[4,4],11,2]1,13,4]1,1[8,81,[6,
—91,104,71,106,81,18,71,14,81,17,91,15,91,18,81,105,41,12,21,14,91,101,41,11,81,\
[8,61,04,51,09,11,(3,11,[6,2], 17,11, 12,061,101, 71,109,71,17,
—~51,17,11,15,61,13,51,18,81,108,91,12,91,103,11,15,91,1(7,81,104,31,12,81,18,41,\
(9,51,106,71,18,21,13,51,02,61,(3,21,19,71,[1,11,16,71,17,
=41, [6,4],[7,6],106,4]1,13,2]]
#optimal solution for comparison
optimum_knapsack = [2,3,6,7,8,10,11,12,14,15,16,19,20,22,26,27,28,31,32,34,35,
—~37,39,40,44,45,46,48,51,55,59,60,61,65,66,67,68,69,\
70,73,74,75,78,79,81,83,84,86,87,89,92,93, 94, 96,
—97,98,99,100]

#episode length
episode_length = 2
weilght_capacity= 250
else:
raise ValueError ('-—-error: n_objects is not defined, either choose 50 or 100")

return obj_list, optimum_knapsack, episode_length, weight_capacity

# User Parameters for RL Optimisation

(continues on next page)
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# ________________________________________________________
try:
total_steps=int (sys.argv[l]) #get time steps as external argument (for quick_
—testing)
except:
total_steps=8000 #or use default total time steps to run all optimizers
n_steps=12 #update frequency for A2C, ACKTR, PPO
n_objects=50 #number of objects: choose 50 or 100
n_sum_steps=10 #this is for logging and averaging purposes
#-——-get some data to initialize the enviroment—---—
obj_list, optimum_knapsack, episode_length, weight_capacity=KP_Data (n_objects=n_
—objects)
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
# DON
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

#create an enviroment object from the class

env=KP (obj_list=obj_list, optimum_knapsack=optimum_knapsack,
episode_length=episode_length, weight_capacity=weight_capacity, method = 'dgn

")

#create a callback function to log data

cb_dgn=RLLogger (check_freg=1)

#To activate logger plotter, add following arguments to chb_dqgn:

#plot_freq = 50,n_avg_steps=10, pngname="'DON-reward'

#Also applicable to ACER.

#create a RL object based on the env object

dgn = DON (DQNPolicy, env=env, seed=1)

#optimise the enviroment class
dan.learn(total_timesteps=total_steps*n_sum_steps, callback=cb_dgn)

# ACER

# ________________________________________________________

env=KP (obj_list=obj_list, optimum_knapsack=optimum_knapsack,
episode_length=episode_length, weight_capacity=weight_capacity, method = 'acer

")

cb_acer=RLLogger (check_freqg=1)
acer = ACER (MlpPolicy, env=env, seed=1l)
acer.learn (total_timesteps=total_steps+n_sum_steps, callback=cb_acer)

# PPO

# ________________________________________________________

env=KP (obj_list=obj_list, optimum_knapsack=optimum_knapsack,
episode_length=episode_length, weight_capacity=weight_capacity, method = 'ppo

=")

cb_ppo=RLLogger (check_freg=1)

#To activate logger plotter, add following arguments to cb_ppo:
#plot_freq = 1, n_avg_steps=10, pngname='PPO-reward'

#Also applicable to A2C, ACKTR.

ppo = PPO2 (MlpPolicy, env=env, n_steps=n_steps, seed = 1)
ppo.learn(total_timesteps=total_steps, callback=cb_ppo)

env=KP (obj_list=obj_list, optimum_knapsack=optimum_knapsack,
episode_length=episode_length, weight_capacity=weight_capacity, method =

—'acktr'") (continues on next page)
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cb_acktr=RLLogger (check_freg=1)
acktr = ACKTR(MlpPolicy, env=env, n_steps=n_steps, seed = 1)
acktr.learn(total_timesteps=total_steps, callback=cb_acktr)

# ________________________________________________________

# A2C

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

env=KP (obj_list=obj_list, optimum_knapsack=optimum_knapsack,
episode_length=episode_length, weight_capacity=weight_capacity, method = 'aZc

—")

cb_a2c=RLLogger (check_freqg=1)
azc = A2C(MlpPolicy, env=env, n_steps=n_steps, seed = 1)
a2c.learn(total_timesteps=total_steps, callback=cb_a2c)

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

#Summary Results

# ________________________________

print ('——————————————— DON results ——————————————— ")
print ('The best value of x found:', cb_dgn.xbest)
print ('The best value of y found:', cb_dgn.rbest)
print('-————————————— ACER results ——————————————~ ")
print ('The best value of x found:', cb_acer.xbest)
print ('The best value of y found:', cb_acer.rbest)
print('-—————————————— PPO results ——————————————— ")

(
(
(
(
(
(
(
print ('The best value of x found:', cb_ppo.xbest)
(
(
(
(
(
(
(

print ('The best value of y found:', cb_ppo.rbest)
print('-————-----—-——— ACKTR results ——————————————~— ")

print ('The best value of x found:', cb_acktr.xbest)

print ('The best value of y found:', cb_acktr.rbest)
print('-—————————————— A2C results ——————————————- ")

print ('The best value of x found:', cb_a2c.xbest)

print ('The best value of y found:', cb_a2c.rbest)

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

#Summary Plots

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

log_dgn = pd.DataFrame (cb_dgn.r_hist) .cummax (axis = 0).values
log_acer = pd.DataFrame (cb_acer.r_hist).cummax (axis = 0).values
log_ppo = pd.DataFrame (cb_ppo.r_hist).cummax(axis = 0).values
log_acktr = pd.DataFrame (cb_acktr.r_hist).cummax (axis = 0) .values
log_a2c = pd.DataFrame (cb_a2c.r_hist) .cummax (axis = 0).values

def update_log_dgn_acer (log, n_sum_steps):
# This is a helper function to convert right logger for DON/ACER to
# to be equivalent to other algs.
#Inputs:
#log: orginal DON/ACER logger
#n_sum_steps: number of steps to group and sum.

#Outputs:
#updated_log: the converted log for DON/ACER
data=np.transpose (log.tolist ()) [0]
size=len (data)
updated_log = [sum(data[i:i+n_sum_steps])/n_sum_steps for i in range (0,size,n_sum_
—steps) ]

updated_log.pop (0); updated_log.pop(0); updated_log.pop(-1) #remove extraneous,,
—entries
return updated_log

(continues on next page)
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#update the DON/ACER loggers
log_dgn=update_log_dqgn_acer (log_dgn, n_sum_steps)
log_acer=update_log_dgn_acer (log_acer, n_sum_steps)

#plots

plt.figure()

plt.plot (log_dgn, label = "DON")
plt.plot (log_acer, label = "ACER")
plt.plot (log_ppo, label = "PPO")
plt.plot (log_acktr, label = "ACKTR")
plt.plot (log_a2c, label = "A2C")

plt.xlabel ('Step')

plt.ylabel ('Best Knapsack value')

plt.legend()

plt.savefig("kp_history.png", format="png' ,dpi=300, bbox_inches="tight")
plt.show ()

Results

A summary of the results is shown below for the case of 50 items/objects. First, all five reinforcement algorithms
are compared in terms of maximizing the sum of item weights. The fitness convergence shows that PPO and ACKTR
are the best algorithms in this case, with PPO slightly achieved a better fitness. Therefore, we will limit the reported

results to PPO.

— oon
60 AcCER
20
a0 — AckTR
— nxc

O 1000 2000 3000 4000 5000 6000 7000 8000
step

The maximum value of the Knapsack tour cost found by PPO is 188, which is fairly close to the optimal sum of item
values of 204. The PPO Knapsack is below

Episode: 1787, Value of the Knapsack : 188.0
Sum of the weights : 125.0

. . . ® Remainin g items
. .

weights [

5
values [

while here is the target optimal Knapsack

Sum of the values : 204.0
Sum of the weights : 125.0
Weight's limit : 125

DY

weights (-]

And here are the final results of all algorithms:
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777777777777777 DON results ———————————————

The best value of x found: [('7', '8', '9', '10', '11', '12', '13"', "'14', '15', 'l6",
-'17', '18', 'i19', '20', '21', ‘'22', '23', '24', '25', '26', '27', '28', '29', '33"',
—'45', '36', '48', '35', 'e6', '37', '4', '30', '41']

The best value of y found: 175.0

777777777777777 ACER results ——————————————~

The best value of x found: ['41', '36', '10', '2', 'e', '22', '13', '7', '"15', '48",
-'19', '8', '21', '17', ‘*49', '3', ‘'1i1', '4', '23', '26', '25', ‘'1', '28', '50', '9',
— '20', '24', '33', '29', '32', '31', '14', '43', '27']

The best value of y found: 186.0

777777777777777 PPO results ——————————————

The best value of x found: ['l1', '28', '12', '4', '30', '47', '33', '9', '17"', '29"',
—'49', '2¢6', '41', '43', '6', '3', ‘'45', '22', '35', ‘'g', '48', '15', '36', '44', '23
o', '7', '32', '21', '34', '1', '25', '27', '19', '20', '14', '40']

The best value of y found: 188.0

777777777777777 ACKTR results ———————————————

The best value of x found: ['29', '12', '31', ‘'4', '7', "'36"', '39', '24"', '10', '40°',
—'15', '22', '33', '48', '9', '19', '32', '45', '34', '14', '8', '25', '2', '11', '46
', '28', '23', '3', '49",

'26', '21', '35', 'le', '38'"]

The best value of y found: 187.0

777777777777777 A2C results ———————————————

The best value of x found: ['le', '28', 'l15', '4', '32', '23', '20', '1', ‘"43', '8",
—-'36', '3', '35', '46', '2', '22', '21', '41', '18', '7', '24', '38', '40', '11', '12
', '29', 44, '49', '48', '37', '33', '9']

The best value of y found: 181.0

2.4.11 Example 11: Microreactor Control with Malfunction
Example demonstrating NEORL used to find optimal control mechanism positions to acheive favorable operation of a
nuclear microreactor.

Original paper: Price, D., Radaideh, M. 1., Kochunas, B. (2022). Multiobjective optimization of nuclear microreactor
reactivity control system operation with swarm and evolutionary algorithms. Nuclear Engineering and Design, 393,
111776.

https://doi.org/10.1016/j.nucengdes.2022.111776

Summary

¢ Algorithm: DE, ES, MFO
* Type: Multi Objective, Unconstrained

* Field: Nuclear Engineering
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Problem Description

The HOLOS-Quad reactor design is a high-temperature gas-cooled microreactor which has 8 cylindrical control drums
for reactivity control. Each of the drums has a portion of their outer surface covered by absorbing material which, when
rotated towards the body of the core, can absorb neutrons. The position of a drum will refer to its rotation angle from
fully inserted. A view of the core design is given below:

<<awaiting approval to include picture>>

In this example, one of the 8 drums is immobilized and the positions of the remaining 7 drums need to be selected to
satisfy three criteria:

1. Insert a target reactivity: In order for a nuclear reactor to effectively operate, the control system needs to adjust
such that the core can have a criticality of 1.

2. Minimize the differences in quadrant powers: Nuclear reactors must maintain relatively even power distributions
to effectively operate because the maximum reactor power is limited by the highest power region in the core.
Even power distributions allow for higher power output while maintaining safe operation.

3. Minimize the travel distance of the farthest traveling drum: Control drums have a maximum rotation speed
which dictates the amount of time required to a drum to a certain position. Therefore, minimizing the travel
distance of the farthest traveling drum will minimize the time required to position all control drums.

These criteria must be expressed mathematically to create the objective functions. Due to the large computational
cost associated with conventional calculation methods for core criticality and quadrant powers, surrogate models must
be used. For the target reactivity objective, a method which uses a physics-based model augmented with a statistical
model is used to predict the reactivity inserted from a particular control drum configuration. This model is described
in detail in the paper below:

Price, D., Kinast, S., Barr, K., Kochunas, B., & Filippone, C. (2021), A perturbation-based hybrid methodology for
control drum worth prediction applied to the HOLOS-Quad microreactor concept. Annals of Nuclear Energy. (In
Press)

This model will be refered to as p(Z) where Z is a vector of 7 control drum positions. Each component of Z is bounded
by -7 and 7 radians. The objective function can then be written as:

fe(@) = |pgt — p(7)]

where py4; is the target reactivity. The ¢ subscript on f is used to show that this objective function corresponds to the
criticality conditions of the core. The circumflex indicates that this objective is currently unscaled.

For the next objective, that is to minimize the differences in quadrant powers, a neural network is used to predict
fractional quadrant powers for a particlar control drum configuration. More information on this neural network is
given in the paper given at the top of this page as “Original Paper”. If the power in each quadrant of the core can be
represented by P with some subscript indicating which of the four quadrants P represents, the objective function can
be given as:

P 71
P+P+P;+ Py 4

Here, the p subscript is included to indicate the objective function corresponding to the core quadrant powers.

The final objective is the simplest of the three, it is simply the maximum drum rotation angle present in Z.
fa(#) = max 7

Now that the three objective functions have been defined, they can be scaled such that their outputs occupy similar
scales. Although not strictly necessary, it makes the weight selection with the scalarization method considerably more
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straightforward. Separately for each of the three objectives, f (Z) is transformed into f(Z) using the equation given
below:

f max f min
where fmaw and fmm denote the maxima and minima of the objective being scaled. This can be obtained with a

simple single objective optimization problem or it can be obtained using knowledge of the problem. Nevertheless, in
this application, these extrema are given in the original paper.

f(@)

Next, scalarization is performed. Scalarization is a method used to reduce a multi objective optimization problem
into a single objective optimization problem by assigning weights to each objective and summing them together.
Mathematically, this can be written as:

F(Z) = we fe(T) + wy fp(T) + wafa(T)

Here, F'(Z) is the function that will be plugged into an optimizer and w is used to indicate the weight assigned to each
of the objective functions. Moreover, the selection of these weights is nontrivial and an important part of complex
optimization analyses. For this application, w. = 0.50, w, = 0.40 and wq = 0.10. More discussion is given in the
original paper on the selection of these weights.

NEORL script

import numpy as np

import matplotlib.pyplot as plt

import sys

from neorl import DE, ES, MFO

from neorl.benchmarks.reactivity_model import ReactivityModel
from neorl.benchmarks.gpower model import QPowerModel

#import models from other files in repo
rm = ReactivityModel ()
pm = QPowerModel ()

#define unscaled objectives
def hatfc(x):
thetas
thetas

= np.zeros(8)
[0] = x[O]

thetas[2:] = x[1:]

react = rm.eval (thetas)

return np.abs(react - 0.03308)

def hatfp(x

)
thetas = np.zeros(8)
thetas[0] = x[0]
thetas[2:] = x[1:]

powers = pm.eval (thetas)
targets = np.zeros(4)+0.25
return np.abs (powers - targets) .sum()

def hatfd(x):
return np.max (np.abs(x))

#define objective scaling parameters
fc_max = 0.03308
fc_min = 0

(continues on next page)
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fp_max 0.0345
fp_min = 0

fd_max = np.pi
fd_min = 0

#define scaling objectives

fc = lambda x : (hatfc(x) - fc_min)/ (fc_max — fc_min)
fp = lambda x : (hatfp(x) - fp_min)/ (fp_max - fp_min)
fd = lambda x : (hatfd(x) - fd_min)/ (fd_max - fd_min)

#define function weights

wc = 0.5
wp = 0.4
wd = 0.1

#define single objective function
F = lambda x : wc*fc(x) + wpxfp(x) + wdxfd(x)

#define drum rotation bounds
BOUNDS = {"x%i"%i : ["float", -l.xnp.pi, l.*np.pi] for i in range(l, 8)}

#run de optimization

npop = 20

F_de = 0.4

CR = 0.3

de = DE(mode = "min", bounds = BOUNDS, fit = F, npop = npop, F = F_de, CR = CR, seed
o= 1)

de_x, de_y, de_hist = de.evolute (100, verbose = True)

#run es optimization

mu = 25

cxpb = 0.6

mutpb = 0.3

es = ES(mode = "min", bounds = BOUNDS, fit = F, lambda_ = 50, mu = mu, cxpb = 0.6,
mutpb = 0.3, seed = 1)

es_x, es_y, es_hist = es.evolute (100, verbose = True)

#run mfo optimization

nmoths = 55

mfo = MFO (mode = "min", bounds = BOUNDS, fit = F, nmoths = nmoths, b = 1, seed = 1)
mfo_x, mfo_y, mfo_hist = mfo.evolute (100, verbose = True)

plt.plot (de_hist["global fitness"], label = "DE")
plt.plot (es_hist["global fitness"], label = "ES")
plt.plot (mfo_hist["global fitness"], label = "MFO")

plt.xlabel ("Generation")
plt.ylabel ("Fitness")
plt.legend()

plt.show ()

print ("MFO fc hat")
print (hatfc (mfo_x))
print ("MFO fp hat")
print (hatfp (mfo_x))

(continues on next page)
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(continued from previous page)

print ("MFO fd hat")
print (hatfd (mfo_x))

Results

A summary of the results for the different methods is shown below with the best # and F'(Z). All methods seem to
reasonably seek minima.

0.300 -
— DE
— ES
0.275 - MEO
0.250 -
0.225 -
w
i
[
5 0.200 -
e
0.175 -
0.150 -
0.125 - -
T T T T T T
0 20 40 60 80 100

Generation

777777777777777777777777 DE Summary ——————————————————————————

Best fitness (y) found: 0.12723682745792148

Best individual (x) found: [3.113469132155524, 2.52205504536713, -1.940784552123703,
—2.3264933610351117, -2.0539691214048084, 3.089626887713435, 1.4072560227038484]
777777777777777777777777 ES Summary ——————————————————————————

Best fitness (y) found: 0.11653471587218096

Best individual (x) found: [3.141592653589793, 2.0878715421838763, 2.0334381504862433,
— 2.2178488588636247, —-2.2914574224308626, 2.4524812539265213, 1.7243458084183882]
———————————————————————— MEFO Summary ——————————————————————————

Best fitness (y) found: 0.12684771880454485

Best individual (x) found: [3.14159265 3.14159265 1.29847427 1.85712596 3.14159265 2.
—77812329 1.89814577]
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The errors in the unscaled objectives can also be obtained:

"MFO fc hat"
hatfc (mfo_x)
"MFO fp hat"
hatfp (mfo_x)
"MFO fd hat"
hatfd (mfo_x)

print
print
print
print
print

(
(
(
(
(
print (

)
)
)
)
)
)

MFO fc hat

1.9822642943062574e-07

MFO fp hat

0.0023153573274612427

MFO fd hat
3.141592653589793

2.5 Change Log

2.5.1 Stable Releases (for users)

Release 1.8 (2022-6-5)

pip install neorl==1.8

* Improvements in mixed-discrete optimization for various algorithms.

¢ Introducing new ensemble optimization algorithms: AEO, EPSO, EDEV, HCLPSO.

* New features for simulated annealing.

* More organized documentation with subsections.

* Application of NEORL to nuclear microreactors, recently published here: https://doi.org/10.1016/j.nucengdes.

2022.111776

Release 1.7 (2021-11-24)

pip install neorl==1.

7

* Fixed a major bug following scikit-learn update to 1.0.0. Now, NEORL supports scikit-learn <= 0.24.0

* Misc. minor updates for the documentation and the source code

Release 1.6 (2021-09-10)

pip install neorl==1.6

The first NEORL stable release.

Includes all changes in all previous beta releases: 1.2.0b-1.5.7b.

e Summary: 28 algorithms, 4 tuning methods, 10 real-world examples, and 39 unit tests.

* Documentation and Github repo are up-to-date.

2.5. Change Log
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2.5.2 Beta Releases (for developers)

Release 1.7.8b (2022-6-4)

pip install neorl==1.7.8b —--extra-index-url https://test.pypi.org/simple

* Fixed bug related to protobuf <= 3.20 version to avoid tensorflow error when installation.

Release 1.7.7b (2022-6-4)

pip install neorl==1.7.7b —--extra-index-url https://test.pypi.org/simple

* Fixed bugs when initializing methods (ES, PSO, GWO, etc.) for discrete/mixed optimization with the argument
x0.

* Fixed bugs in TS, CS, SA for discrete/mixed optimization.

* Enabled discrete/mixed optimization for AEO.

Release 1.7.6b (2022-4-25)

pip install neorl==1.7.6b —--extra-index-url https://test.pypi.org/simple

¢ Added a new features for parallel simulated annealing (PSA).

» PSA features include new equilibrium schedule and new solution enforcement.

Release 1.7.5b (2022-3-29)

pip install neorl==1.7.5b --extra-index-url https://test.pypi.org/simple

* Added a full module for EPSO with parallel support and all space types.
* Fixed a minor bug in HCLPSO.

Release 1.7.4b (2022-3-26)

pip install neorl==1.7.4b --extra-index-url https://test.pypi.org/simple

* Added a full module for HCLPSO with parallel support and all space types.
* Added a full module for EDEV with parallel support and all space types.
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Release 1.7.3b (2022-3-6)

pip install neorl==1.7.3b —--extra-index-url https://test.pypi.org/simple

* Fixed a division by zero bug for PSO mode globw.
* Added a first test module for a new hybrid algorithm AEO (Aniormphic Ensemble Optimization).

¢ Added documentation for AEO on the website.

Release 1.7.2b (2022-1-17)

pip install neorl==1.7.2b —--extra-index-url https://test.pypi.org/simple

* Fixed a plotting bug in NEORL benchmarks.
* Added last_pop results to the returned history dictionary of ACO, SSA, JAYA, BAT, CS, XNES.

* Allowed passing annealing parameters via x+kwargs to WOA, GWO, PSO, MFO, HHO (this is for AEO

ensemble research).

Release 1.7.1b (2022-1-03)

pip install neorl==1.7.1b --extra-index-url https://test.pypi.org/simple

* Added new NEORL example 11 on nuclear microreactor application.

¢ Documentation structure updates. Now subsections are part of the documentation structure.

Release 1.6.2b (2021-10-07)

pip install neorl==1.6.2b —--extra-index-url https://test.pypi.org/simple

* Removed summary files from RL runners.

* Added a capability to save current model for RL runners. Currently best model and last model are saved.

Release 1.6.1b (2021-09-20)

pip install neorl==1.6.1b —-extra-index-url https://test.pypi.org/simple

* Fixed a bounding check bug in FNEAT and RNEAT.
* Fixed different typos in the documentation.

* Increased the width of the online documentation page to fit more code/words.

2.5. Change Log
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Releases 1.5.3b-1.5.7b (2021-09-10)

pip install neorl==1.5.7b —--extra-index-url https://test.pypi.org/simple

* Added hybrid neuroevolution algorithm: Neural genetic algorithm (NGA)

* Added hybrid neuroevolution algorithm: Neural Harris hawks optimization (NHHO)
¢ Added Cuckoo Search with all spaces handled.

* Added Ant Colony optimization for continuous domains.

* Added Tabu Search for discrete domains.

* Fixed a critical bug in the terminal API in the followup 1.5.4b

* Fixed a bug in the terminal API continue mode in the followups 1.5.5b-1.5.6b.

* Fixed hyperthreading issue for RL algorithms in the followup 1.5.7b.

Release 1.5.2b (2021-08-10)

pip install neorl==1.5.2b —--extra-index-url https://test.pypi.org/simple

* Added hybrid neuroevolution algorithm PPO-ES.
* Added hybrid neuroevolution algorithm ACKTR-DE.

* Updated documentation for RL algorithms.

Release 1.5.1b (2021-08-01)

pip install neorl==1.5.1b —--extra-index—-url https://test.pypi.org/simple

¢ Added RNEAT and FNEAT with full documentation.
* Added mixed discrete optimization to WOA, GWO, SSA, DE, MFO, JAYA, PESA2
* Added friendly implementation to construct parallel environments for RL: DQN, ACKTR, A2C, PPO

Release 1.5.0b (2021-07-28)

pip install neorl==1.5.0b —--extra-index-url https://test.pypi.org/simple

* Updated Example 1 on using RL to solve Travel Salesman problem
¢ Added Example 10 on using RL to solve Knapsack problem
* Added CEC-2008 benchmark functions for large-scale optimization
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Release 1.4.8b (2021-07-14)

pip install neorl==1.4.8b —--extra-index-url https://test.pypi.org/simple

¢ Added environment class constructor for DQN, ACER, PPO, ACKTR, A2C
* Added mixed discrete/continuous optimization for PPO, ACKTR, A2C
* Added categorical/discrete optimization for ACER, DQN.

Releases 1.4.6b-1.4.7b (2021-07-09)

pip install neorl==1.4.7b —--extra-index-url https://test.pypi.org/simple

* Modifying Bat algorithm to handle mixed spaces.

* Added Example 6 on three-bar truss design.

¢ Added Examples 7 and 8 on pressure vessel design.
* Added Example 9 on cantilever stepped beam.

» Fixing bugs after 1.4.6b.

Releases 1.4.1b-1.4.5b (2021-07-05)

pip install neorl==1.4.5b —--extra-index-url https://test.pypi.org/simple

* Fixing bounding issues in most evolutionary algorithms.

* Fixing PESA/PESA?2 parallel mode.

* Replacing XNES with WOA in modern PESA2.

* Added a module for Harris Hawks Optimization.

* Added the BAT algorithm.

* Removed deprecation warnings of Tensorflow from NEORL.
* Added a module for JAYA.

¢ Added a module for MFO.

2.5.3 Old Releases (outdated)

Release 1.4.0b (2021-05-15)

¢ Added a module for Simulated Annealing (SA).

* Added a Genetic/Evolutionary hyperparameter tuning module.
Added ACER module for RL optimization.

Added ACKTR module for RL optimization.

Added a WOA module for evolutionary optimization.

Added a SSA module for evolutionary optimization.
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Release 1.3.5b (2021-05-10)

Added CEC’2017 Test Suite benchmarks

Added a set of classical mathematical functions
¢ Added new Example (4) on the website on how to access the benchmarks
* Added new Example (5) on the website on how to optimize the benchmarks

Releases 1.3.1b-1.3.2b (2021-05-4)

* Fixing miscellaneous bugs

Release 1.3.0b (2021-05-1)

¢ Added a module for the hybrid algorithm PESA.
* Added a module for the modern hybrid algorithm PESA2.
* Added a GWO module.

* Adding min/max modes for all algorithms.

Release 1.2.0b (2021-04-15)

¢ The first public open-source version of NEORL

Added DE with serial implementation.

Added XNES with parallel implementation.
* Restructuring the input parameter space.

* Detailed README file in the Github page.
Added unit tests to NEORL.

* Automatic documentation via Sphinx

Release 1.1.0-Private (2020-12-15)

* Added Bayesian hyperparameter tuning from scikit-optimise.
* Added parallel evolutionary strategies(ES).

» Updated documentation.
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Release 1.0.0-Private (2020-09-15)

Added evolutionary strategies ES.

Added a local PDF documentation.
* Added parallel PSO.

Added Random search hyperparameter tuning.

Release 0.1.1-Private (2020-03-15)

* A support for both classical (evolutionary) and modern (machine learning) optimization in the same package.
Currently, DQN (serial), PPO (parallel), A2C (parallel), GA (serial), SA (serial) are supported. All RL algo-
rithms are based upon stable-baselines.

» Easy-to-use syntax and friendly interaction with the package.
* A support for parallel computing.
* Added grid search hyperparameter tuning.

* For developers: an organized implementation and source code structure to facilitate the job of future external
contributors.

* NEORL examples are provided in the “examples” directory.

2.6 Projects

This is a list of projects using NEORL. Please contact us if you want your project to appear on this page.

2.6.1 Physics-informed Reinforcement Learning Optimisation with NEORL

Method=RL (PPO)
K1%=110446 PPF=1367 CL=1462 days

2.4 32 40 40 40 40 40 40 32 24
44 4.95
32 495 ¢4 495495495495 4% 40 32

44 495
40 g 49549549545 495495 44 40

4.95 4.95
40 4% 495495494

44 44 405495
32 40 a4 gg 40 g 49547 49532

24 32 40 40 40 40 40 40 32 24

Nuo,= 74 E=4.350% Nea=18 G=7.333%

Optimization of nuclear fuel assemblies if performed effectively, will lead to fuel efficiency improvement, cost reduc-
tion, and safety assurance. However, assembly optimization involves solving high-dimensional and computationally
expensive combinatorial problems. As such, fuel designers’ expert judgement has commonly prevailed over the use
of stochastic optimization (SO) algorithms such as genetic algorithms and simulated annealing. To improve the state-
of-art, we explore a class of artificial intelligence (Al) algorithms, namely, reinforcement learning (RL) in this work.
We propose a physics-informed Al optimization methodology by establishing a connection through reward shaping
between RL and the tactics fuel designers follow in practice by moving fuel rods in the assembly to meet specific con-
straints and objectives. The methodology utilizes RL algorithms, deep Q learning and proximal policy optimization,
and compares their performance to SO algorithms. The methodology is applied on two boiling water reactor assem-
blies of low-dimensional ( combinations) and high-dimensional ( combinations) natures. The results demonstrate that
RL is more effective than SO in solving high dimensional problems, i.e., 10x10 assembly, through embedding expert
knowledge in form of game rules and effectively exploring the search space. For a given computational resources
and timeframe relevant to fuel designers, RL algorithms outperformed SO through finding more feasible patterns, 4-5
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times more than SO, and through increasing search speed, as indicated by the RL outstanding computational effi-
ciency. The results of this work clearly demonstrate RL effectiveness as another decision support tool for nuclear fuel
assembly optimization.

Authors: Majdi I. Radaideh et al., 2021.
Reference: https://doi.org/10.1016/j.nucengdes.2020.110966

2.6.2 Reinforcement Learning Guiding Evolutionary Algorithms in Constrained Op-
timization

For practical engineering optimization problems, the design space is typically narrow, given all the real-world con-
straints. Reinforcement Learning (RL) has commonly been guided by stochastic algorithms to tune hyperparameters
and leverage exploration. Conversely in this work, we propose a rule-based RL methodology to guide evolutionary
algorithms (EA) in constrained optimization. First, RL proximal policy optimization agents are trained to master
matching some of the problem rules/constraints, then RL is used to inject experiences to guide various evolution-
ary/stochastic algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, differential
evolution, and natural evolution strategies. Accordingly, we develop RL-guided EAs, which are benchmarked against
their standalone counterparts. RL-guided EA in continuous optimization demonstrates significant improvement over
standalone EA for two engineering benchmarks. The main problem analyzed is nuclear fuel assembly combinatorial
optimization with high-dimensional and computationally expensive physics. The results demonstrate the ability of RL
to efficiently learn the rules that nuclear fuel engineers follow to realize candidate solutions. Without these rules, the
design space is large for RL/EA to find many candidates. With imposing the rule-based RL methodology, we found
that RL-guided EA outperforms standalone algorithms by a wide margin, with times improvement in exploration ca-
pabilities and computational efficiency. These insights imply that when facing a constrained problem with numerous
local optima, RL can be useful in focusing the search space in the areas where expert knowledge has demonstrated
merit, while evolutionary/stochastic algorithms utilize their exploratory features to improve the number of feasible
solutions.

Authors: Majdi I. Radaideh and Koroush Shirvan
Reference: https://doi.org/10.1016/j.knosys.2021.106836
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2.6.3 Application of GA and DQN for in-core fuel management

The nuclear reactor core is composed of few hundred assemblies. The loading of these assemblies is done with the
goal of reducing its overall cost while maintaining safety limits. Typically, the core designers choose a unique position
and fuel enrichment for each assembly through use of expert judgement. In this thesis, alternatives to the current
core reload design process are explored. Genetic algorithm and deep Q-learning are applied in an attempt to reduce
core design time and improve the final core layout. The reference core represents a 4-loop pressurized water reactor
where fixed number of fuel enrichments and burnable poison distributions are assumed. The algorithms automatically
shuffles the assembly positions to find the optimum loading pattern. It is determined that both algorithms are able to
successfully start with a poorly performing core loading pattern and discover a well performing one, by the metrics
of boron concentration, cycle exposure, enthalpy-rise factor, and pin power peaking. This shows potential for further
applications of these algorithms for core design with a more expanded search space.

Author: Jane Reed
Reference: http://34.201.211.163/handle/1721.1/127308

2.7 Contributors

These bios and affiliations are not continuously updated, and were added during the contribution period

Majdi I. Radaideh is a Research Scientist at MIT Nuclear Science and Engineering. He obtained his MS and PhD
degrees from the University of Illinois at Urbana Champaign (UTUC) between August 2015 - August 2019. Radaideh’s
research focuses on algorithms, data engineering, deep learning, physics-informed machine learning, reinforcement
learning, uncertainty quantification, and large-scale optimization with applications related to nuclear reactor safety and
multiphysics simulations. Radaideh is the founder of NEORL with contributions include establishing the framework
structure, algorithm development, open-source and documentation handling, benchmarking and testing, applications to
nuclear fuel assembly optimisation, user interface handling, parallel computing, and many other minor contributions.

Github: https://github.com/mradaideh

Koroush Shirvan is the John Clark Hardwick (1986) Career Development Professor in the Department of Nuclear
Science and Engineering. Previously, he was a principal research scientist at Center for Advanced Nuclear Energy
Systems (CANES). He specializes in development and assessment of advanced nuclear reactor technology. His re-
search combines multiple scales, physics and disciplines, and machine learning to realize innovative solutions in the
highly regulated nuclear energy sector. His contribution to NEORL includes securing the funding for NEORL, signif-
icant contributions to the development of the physics-based applications of NEORL in the nuclear engineering area,
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and direct administration of the project.

Webpage: https://web.mit.edu/nse/people/faculty/shirvan.html

Paul RM. Seurin is a Ph.D student in the joint program between the Nuclear Science and Engineering department
and the Center for Computational Science and Engineering at MIT. He joined MIT in September 2019 after receiving
an Engineering Diploma and a Master in Nuclear Engineering from France. His research involves algorithm design
for optimization with focuses on heuristics methods, deep, and Reinforcement Learning with applications to nuclear
reactor economics and licensing. For NEORL, he is currently working on validation and benchmarking, applying
the framework to Pressurized Water Reactor optimization, and to solve combinatorial problems like Travel Salesman,
Knapsack, and Job Scheduling problems. In algorithms, he developed the base classes for Cuckoo search and Tabu
search, while he is also planning to develop a combinatorial version of the Ant Colony optimizer.

Haijia Wang is an undergraduate student at MIT in the MIT Electrical Engineering and Computer Science Department.
She is in the class of 2023, studying Computer Science and Engineering. She is passionate about algorithm design and
optimization, artificial intelligence and machine learning, and advanced computing technologies. Haijia is interested
in exploring these fields in her studies and future career. She worked as a summer research intern with NEORL in
2020, and her contribution was adding different hyperparameter tuning methods to NEORL, including evolutioanry
search and Bayesian search. She also validated the classes for grid and random search.

Linkedin: https://www.linkedin.com/in/haijia-wang
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Katelin Du is an undergraduate student at MIT in the class of 2023. She is studying nuclear science and engineering
with a focus in computational modeling and simulation methods. She is interested in the use of computational tools
such as simulation methods and machine learning in engineering applications. In the summer of 2021, she worked as
an undergraduate researcher and contributed to NEORL by adding to its existing set of optimization algorithms and
performing engineering benchmarking. Algorithms she worked on include Harris Hawks Optimization and hybrid
neuroevolution Harris Hawks Optimization, and genetic algorithms.

Devin Seyler is an undergraduate at MIT in the class of 2022 studying physics and mathematics. He is interested
in nuclear physics and the use of algorithms in engineering applications, particularly to solve problems related to
energy design and optimization. He worked as an undergraduate researcher with NEORL during the summer of
2021, contributing to its set of optimization algorithms. Specifically, he worked on Bat Algorithm and a hybrid
neuroevolutionary Grey Wolf Optimizer. He also performed benchmarking with various engineering problems along
with application of NEORL on fuel cell energy optimization.
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John Mobley 1V is a Ph.D. student within the Department of Nuclear Science and Engineering at MIT. He joined MIT
in June 2021 following the completion of his undergraduate career at lowa State University where he earned a B.S.
in Physics and a B.S. in Mathematics. Passionate about the development and deployment of advanced nuclear reactor
technologies from Generation IV and beyond, John is interested in exploring the burgeoning domain of small-scale,
reduced capital, modular, self-contained concepts. Contributing to NEORL, he has worked to identify the implications
of hyperparameters in an effort to tune and isolate optimal settings. He also has worked on application of NEORL to
Pressurized Water Reactor core optimization.

Linkedin: https://www.linkedin.com/in/johnmobleyiv/

= B

Xubo GU obtained his MS degree from Shanghai Jiao Tong University in 2020. His research involves machine
learning, reinforcement learning, data analytics, large-scale optimization with heuristic methods, and their applications
in the industry. He has one year of working experience in an industrial-intelligence company, where he applied
optimization techniques and machine learning to solve practical industrial problems. For NEORL, he developed
three evolutionary algorithms, including MFO, JAYA, and ACO. He also developed two hybrid neuroevolutionary
algorithms for NEORL - FNEAT and RNEAT. Besides, he is the main developer of OpenNeoMC, which combines
NEORL with OpenMC to empower particle transport code with state-of-the-art optimization techniques of NEORL.

Dean Price is a graduate student at the University of Michigan studying for a PhD in Nuclear Engineering. Dean has
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experience in various areas of nuclear reactor modeling and simulation including uncertainty quantification, sensitivity
analysis, burnup credit, spent fuel criticality safety, surrogate modeling and multiphysics coupling. For NEORL, he
helps maintain the code base and has demonstrated the capabilities of NEORL on microreactor control applications.
Currently, he is working to develop new optimization algorithms to be included in future versions of NEORL.

ORCID: https://orcid.org/0000-0003-0999-0111

2.8 Contribution Guide

2.8.1 Bug Reporting

All bugs or general issues can be reported on the Github issues page: https://github.com/mradaideh/neorl/issues

2.8.2 Getting Started

In order to contribute code that may be included in the main NEORL distribution, the following steps can be taken. In
general, all contributions should be submitted as a pull request to the main NEORL repository. Specifically, the steps
provided below can be used to incorporate code into the NEORL repository.

1. Create a fork of the main NEORL repository. Through Github, this can be done by selecting the “fork” button
on the NEORL page found at: https://github.com/mradaideh/neorl

[ mradaideh / neorl  Pusic @MWateh 1 v | ¢ Fok 8 || & Str 16

<> Code () lssues 2 1% Pull requests () Actions M Projects 3 Wiki @ Security |+ Insights

2. Once this is done, a new repository will be created under your ownership. It will exist under
github_username/neorl. From here, the forked repository can be cloned like any other repository. Navigate to a
directory you plan on working in and enter the command: git clone git@github.com:github-un/
neorl.git

Replace the github-un with your Github username

3. From here, the forked repository can be committed to using typical gif practices.

2.8.3 Incorporating Changes From the Main Repository

Often when making large contributions, it may be necessary to work on the fork for an extended period of time where
updates have been pushed to the upstream (mradaideh/neorl) repository after you originally created the fork. In order
to incorporate these new updates into your local fork:

1. Commit and push all work in your local repository with regular git commit and git push commands.

2. First add the upstream repository into known remote repositories: git remote add upstream
https://github.com/mradaideh/neorl

3. Fetch changes that have been made to upstream repository: git fetch upstream

4. Merge changes made to upstream repository into your local repository: git merge upstream/master
master

5. Push from your local fork (on your PC) to your remote fork (on Github): git push
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2.8.4 Submitting a Pull Request

Once a major contribution to the NEORL code base has been developed and is ready to be incorporated into the
upstream repository (mradaideh/neorl), a pull request can be submitted:

1. While logged into the account with the forked repository containing the changes, navigate to the Github page
for the upstream NEORL repository: https://github.com/mradaideh/neorl

2. Select the “Pull requests” tab near the top of the page and select “new pull request”.

0 mradaideh/neorl « Puoic @Watch 1 ~ | % Fok 10 || & Star 16 | .

<> Code @ lssues 2 17 Pull requests ® Actions B Projects [0 Wik ) Security |~ Insights

Label issues and pull requests for new contributors Dismiss
Now, GitHub will help potential first-time contributors discover issues labeled with

Fiters ~ | Q is:pris:open  Labels 10 P Milestones 0 New pull request

O 11 oOpen .« 9Closed Author = Label ~ Projects Milestones ~ Reviews ~ Assignee ~ Sort v

3. Select “compare across forks” link.
1 mradaideh / neorl  Puic @Wakh 1~ | ¢ Fok 10 ¢y Star 16 .

<> Code @ lssues 2 11 Pull requests (® Actions A Projects 0 Wiki @ Security |~ Insights

Compare changes

Compare changes across branches, commits, tags, and more below. If you need to, you can alsq compare across forks.

11  base:master> & | compare: master~

Choose different branches or forks above to discuss and review changes. Learn about pull requests

©Q

Compare and review just about anything

Branches, tags, commit ranges, and time ranges. In the same repository and across forks.

4. From here, the “base repository” should be set to mradaideh/neorl/master and the “head repository” should
point to the repository that is under your name.

5. Press the “Create pull request” button and fill out the submission fields and submit it for review!
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CHAPTER
THREE

PROJECTS/PAPERS USING NEORL

1- Radaideh, M. 1., Wolverton, 1., Joseph, J., Tusar, J. J., Otgonbaatar, U., Roy, N., Forget, B., Shirvan, K. (2021).
Physics-informed reinforcement learning optimization of nuclear assembly design. Nuclear Engineering and Design,
372, p. 110966 [LINKI1].

2- Radaideh, M. L., Shirvan, K. (2021). Rule-based reinforcement learning methodology to inform evolutionary algo-
rithms for constrained optimization of engineering applications. Knowledge-Based Systems, 217, p. 106836 [LINK2].

3- Radaideh, M. 1., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boiling water reactor bundles
with neuroevolution. Annals of Nuclear Energy, 160, 108355 [LINK3].
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CHAPTER
FOUR

CITING THE PROJECT

To cite this repository in publications:

@article{radaideh202lneorl,
title={NEORL: NeuroEvolution Optimization with Reinforcement Learning},
author={Radaideh, Majdi I and Du, Katelin and Seurin, Paul and Seyler, Devin and Gu,
— Xubo and Wang, Haijia and Shirvan, Koroush},
journal={arXiv preprint arXiv:2112.07057},
year={2021}
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FIVE
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