Source code for neorl.evolu.woa

#    This file is part of NEORL.

#    Copyright (c) 2021 Exelon Corporation and MIT Nuclear Science and Engineering
#    NEORL is free software: you can redistribute it and/or modify
#    it under the terms of the MIT LICENSE

#    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#    SOFTWARE.

# -*- coding: utf-8 -*-
#"""
#Created on Thu Dec  3 14:42:29 2020
#
#@author: Majdi
#"""


import random
import numpy as np
import math
import time
import joblib
from neorl.evolu.discrete import mutate_discrete, encode_grid_to_discrete 
from neorl.evolu.discrete import decode_discrete_to_grid, encode_grid_indv_to_discrete
from neorl.utils.seeding import set_neorl_seed
from neorl.utils.tools import get_population, check_mixed_individual

[docs]class WOA(object): """ Whale Optimization Algorithm :param mode: (str) problem type, either ``min`` for minimization problem or ``max`` for maximization :param bounds: (dict) input parameter type and lower/upper bounds in dictionary form. Example: ``bounds={'x1': ['int', 1, 4], 'x2': ['float', 0.1, 0.8], 'x3': ['float', 2.2, 6.2]}`` :param fit: (function) the fitness function :param nwhales: (int): number of whales in the population :param a0: (float): initial value for coefficient ``a``, which is annealed from ``a0`` to 0 (see **Notes** below for more info). :param b: (float): constant for defining the shape of the logarithmic spiral :param int_transform: (str): method of handling int/discrete variables, choose from: ``nearest_int``, ``sigmoid``, ``minmax``. :param ncores: (int) number of parallel processors (must be ``<= nwhales``) :param seed: (int) random seed for sampling """ def __init__(self, mode, bounds, fit, nwhales=5, a0=2, b=1, int_transform='nearest_int', ncores=1, seed=None): set_neorl_seed(seed) assert ncores <= nwhales, '--error: ncores ({}) must be less than or equal than nwhales ({})'.format(ncores, nwhales) #--mir self.mode=mode if mode == 'min': self.fit=fit elif mode == 'max': def fitness_wrapper(*args, **kwargs): return -fit(*args, **kwargs) self.fit=fitness_wrapper else: raise ValueError('--error: The mode entered by user is invalid, use either `min` or `max`') self.int_transform=int_transform if int_transform not in ["nearest_int", "sigmoid", "minmax"]: raise ValueError('--error: int_transform entered by user is invalid, must be `nearest_int`, `sigmoid`, or `minmax`') self.bounds=bounds self.ncores = ncores self.nwhales=nwhales assert a0 > 0, '--error: a0 must be positive' self.a0=a0 self.b=b #infer variable types self.var_type = np.array([bounds[item][0] for item in bounds]) #mir-grid if "grid" in self.var_type: self.grid_flag=True self.orig_bounds=bounds #keep original bounds for decoding #print('--debug: grid parameter type is found in the space') self.bounds, self.bounds_map=encode_grid_to_discrete(self.bounds) #encoding grid to int #define var_types again by converting grid to int self.var_type = np.array([self.bounds[item][0] for item in self.bounds]) else: self.grid_flag=False self.bounds = bounds self.orig_bounds=bounds self.dim = len(bounds) self.lb=np.array([self.bounds[item][1] for item in self.bounds]) self.ub=np.array([self.bounds[item][2] for item in self.bounds]) def init_sample(self, bounds): indv=[] for key in bounds: if bounds[key][0] == 'int': indv.append(random.randint(bounds[key][1], bounds[key][2])) elif bounds[key][0] == 'float': indv.append(random.uniform(bounds[key][1], bounds[key][2])) #elif bounds[key][0] == 'grid': # indv.append(random.sample(bounds[key][1],1)[0]) else: raise Exception ('unknown data type is given, either int, float, or grid are allowed for parameter bounds') return indv def eval_whales(self): #--------------------- # Fitness calcs #--------------------- core_lst=[] for case in range (0, self.Positions.shape[0]): core_lst.append(self.Positions[case, :]) if self.ncores > 1: with joblib.Parallel(n_jobs=self.ncores) as parallel: fitness_lst=parallel(joblib.delayed(self.fit_worker)(item) for item in core_lst) else: fitness_lst=[] for item in core_lst: fitness_lst.append(self.fit_worker(item)) return fitness_lst def select(self, pos, fit): #this function selects the best fitness and position in a population best_fit=np.min(fit) min_idx=np.argmin(fit) best_pos=pos[min_idx,:].copy() return best_pos, best_fit def ensure_bounds(self, vec): # bounds check vec_new = [] for i, (key, val) in enumerate(self.bounds.items()): # less than minimum if vec[i] < self.bounds[key][1]: vec_new.append(self.bounds[key][1]) # more than maximum if vec[i] > self.bounds[key][2]: vec_new.append(self.bounds[key][2]) # fine if self.bounds[key][1] <= vec[i] <= self.bounds[key][2]: vec_new.append(vec[i]) return vec_new def fit_worker(self, x): #This worker is for parallel calculations # Clip the whale with position outside the lower/upper bounds and return same position x=self.ensure_bounds(x) if self.grid_flag: #decode the individual back to the int/float/grid mixed space x=decode_discrete_to_grid(x,self.orig_bounds,self.bounds_map) # Calculate objective function for each search agent fitness = self.fit(x) return fitness def ensure_discrete(self, vec): #""" #to mutate a vector if discrete variables exist #handy function to be used three times within BAT phases #Params: #vec - bat position in vector/list form #Return: #vec - updated bat position vector with discrete values #""" for dim in range(self.dim): if self.var_type[dim] == 'int': vec[dim] = mutate_discrete(x_ij=vec[dim], x_min=min(vec), x_max=max(vec), lb=self.lb[dim], ub=self.ub[dim], alpha=self.alpha, method=self.int_transform, ) return vec def UpdateWhales(self): # Update the Position of the whales agents for i in range(0, self.nwhales): r1 = random.random() r2 = random.random() self.A = 2 * self.a * r1 - self.a C = 2 * r2 l = (self.fac - 1) * random.random() + 1 p = random.random() for j in range(0, self.dim): if p < 0.5: if abs(self.A) >= 1: r_index = math.floor(self.nwhales * random.random()) X_rand = self.Positions[r_index, :] self.Positions[i, j] = X_rand[j] - self.A * abs(C * X_rand[j] - self.Positions[i, j]) elif abs(self.A) < 1: self.Positions[i, j] = self.best_position[j] - self.A * abs(C * self.best_position[j] - self.Positions[i, j]) elif p >= 0.5: distance2Leader = abs(self.best_position[j] - self.Positions[i, j]) self.Positions[i, j] = (distance2Leader * math.exp(self.b * l) * math.cos(l * 2 * math.pi) + self.best_position[j]) self.Positions[i,:]=self.ensure_bounds(self.Positions[i,:]) self.Positions[i, :] = self.ensure_discrete(self.Positions[i,:])
[docs] def evolute(self, ngen, x0=None, verbose=False, **kwargs): """ This function evolutes the WOA algorithm for number of generations. :param ngen: (int) number of generations to evolute :param x0: (list of lists) initial position of the whales (must be of same size as ``nwhales``) :param verbose: (bool) print statistics to screen :return: (tuple) (best individual, best fitness, and dictionary containing major search results) """ self.history = {'local_fitness':[], 'global_fitness':[], 'a': [], 'A': []} self.best_fitness=float("inf") self.verbose=verbose self.Positions = np.zeros((self.nwhales, self.dim)) if x0: assert len(x0) == self.nwhales, '--error: the length of x0 ({}) MUST equal the number of whales in the group ({})'.format(len(x0), self.nwhales) for i in range(self.nwhales): check_mixed_individual(x=x0[i], bounds=self.orig_bounds) #assert the type provided is consistent if self.grid_flag: self.Positions[i,:] = encode_grid_indv_to_discrete(x0[i], bounds=self.orig_bounds, bounds_map=self.bounds_map) else: self.Positions[i,:] = x0[i] else: # Initialize the positions of whales for i in range(self.nwhales): self.Positions[i,:]=self.init_sample(self.bounds) fitness0=self.eval_whales() self.best_position, self.best_fitness = self.select(self.Positions, fitness0) for k in range(0, ngen): self.alpha= 1 - k * ((1) / ngen) #mir: alpha decreases linearly between 1 to 0, for discrete mutation if 'a' in kwargs: assert len(kwargs["fac"]) == ngen, '--error: the length of `a` in kwargs must equal to ngen' self.a=kwargs["a"][k] else: # a is annealed from 2 to 0 self.a = self.a0 - k * ((self.a0) / (ngen)) if 'fac' in kwargs: #take it from external vector assert len(kwargs["fac"]) == ngen, '--error: the length of `fac` in kwargs must equal to ngen' self.fac=kwargs["fac"][k] else: # fac is annealed from -1 to -2 to estimate l self.fac = -1 + k * ((-1) / ngen) #----------------------------- # Update Whale Positions #----------------------------- self.UpdateWhales() #---------------------- # Evaluate New Whales #---------------------- fitness=self.eval_whales() for i, fits in enumerate(fitness): #save the best of the best!!! if fits < self.best_fitness: self.best_fitness=fits self.best_position=self.Positions[i, :].copy() #--mir if self.mode=='max': self.fitness_best_correct=-self.best_fitness self.local_fitness=-np.min(fitness) else: self.fitness_best_correct=self.best_fitness self.local_fitness=np.min(fitness) self.history['local_fitness'].append(self.local_fitness) self.history['global_fitness'].append(self.fitness_best_correct) self.history['a'].append(self.a) self.history['A'].append(self.A) # Print statistics if self.verbose and i % self.nwhales: print('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^') print('WOA step {}/{}, nwhales={}, Ncores={}'.format((k+1)*self.nwhales, ngen*self.nwhales, self.nwhales, self.ncores)) print('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^') print('Best Whale Fitness:', np.round(self.fitness_best_correct,6)) if self.grid_flag: self.whale_decoded = decode_discrete_to_grid(self.best_position, self.orig_bounds, self.bounds_map) print('Best Whale Position:', self.whale_decoded) else: print('Best Whale Position:', self.best_position) print('a:', np.round(self.a,3)) print('A:', np.round(self.A,3)) print('fac:', np.round(self.fac,3)) print('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^') #mir-grid if self.grid_flag: self.whale_correct = decode_discrete_to_grid(self.best_position, self.orig_bounds, self.bounds_map) else: self.whale_correct = self.best_position if self.verbose: print('------------------------ WOA Summary --------------------------') print('Best fitness (y) found:', self.fitness_best_correct) print('Best individual (x) found:', self.whale_correct) print('--------------------------------------------------------------') if self.mode=='min': fitness=np.array(fitness) else: fitness=-np.array(fitness) #--mir return the last population for restart calculations if self.grid_flag: self.history['last_pop'] = get_population(self.Positions, fits=fitness, grid_flag=True, bounds=self.orig_bounds, bounds_map=self.bounds_map) else: self.history['last_pop'] = get_population(self.Positions, fits=fitness, grid_flag=False) return self.whale_correct, self.fitness_best_correct, self.history